Equilibrium Practice Quiz Le Chatelier's Principle

1) Consider the following reaction:

 $2SO_{2(g)} + O_{2(g)} \rightleftharpoons 2SO_{3(g)} \Delta H = -197 \text{ kJ/mol}$

Which of the following will not shift the equilibrium to the right?

- A) Adding more O₂
- B) Adding a catalyst
- C) Increasing the pressure
- D) Lowing the temperature
- 2) Consider the following equilibrium system:

 $CaCO_{3(s)} \rightleftharpoons CaO_{(s)} + CO_{2(g)}$

Which one of the following changes would cause the above system to shift left?

A) Add more CaO

- B)Remove CaCO₃
- C) Decrease volume
- D) Increase surface area of CaO
- 3) Consider the following equilibrium:

 $SO_2Cl_{2(g)} + energy \rightleftharpoons SO_{2(g)} + Cl_{2(g)}$

When the temperature is decreased, the equilibrium shifts

- A) Left and [SO₂Cl₂] increases
- B) Left and [SO_2Cl_2] decreases
- C) Right and [SO₂Cl₂] increases
- D) Right and [SO₂Cl₂] increases
- 4) Consider the following equilibrium:

 $2SO_{3(g)} \rightleftarrows 2SO_{2(g)} + O_{2(g)}$

The volume of the system is decreased at a constant temperature. A new state of equilibrium is established by a shift of the original equilibrium to the A) Left and [SO₃] increases

B) Right and [SO₃] decreases

- C) Left and [SO₃] remains unchanged
- D) Right and $[SO_3]$ remains unchanged
- 5) Consider the following equilibrium system:

 $CO_{2(g)} + H_{2(g)} \rightleftarrows CO_{(g)} + H_2O_{(g)}$

Which of the following, when added to the system above, would result in a net decrease in [H₂O]?

- A) CO_2
- B) H₂ C) CO
- D) H_2
- 6) Consider the following equilibrium:

 $C_{(s)} + 2H_{2(g)} \rightleftarrows CH_{4(g)} + 74 \text{ kJ}$

When a small amount of solid C is added to the system

- A) [H₂] decreases
- B) [CH₄] increases
- C) The temperature increases
- D) All concentrations remain constant

7) Consider the following equilibrium:

$2NO_{(g)} + Cl_{2(g)} \rightleftarrows 2NOCl_{(g)}$

At constant temperature and volume, Cl₂ is added to the above equilibrium system. As equilibrium re-establishes, A) [NOCl] will decrease

- B) The temperature increases
- C) [NO] will increase
- D) [NOCl] will increase
- 8) Consider the following equilibrium:

 $Cl_2O_{7(g)} + 8H_{2(g)} \rightleftharpoons 2HCl_{(g)} + 7H_2O_{(g)}$ Which of the following would increase the number of moles of HCl?

- A) Increase [H₂O]
- B) Increase [Cl₂O₇]
- C) Increase total pressure
- D) Increase volume of the system
- **9**) Consider the following equilibrium:

$2HI_{(g)} \rightleftarrows H_{2(g) +}I_{2(g)} \Delta H = \textbf{-68kJ}$

Which of the following would cause the equilibrium to shift right?

- A) Increasing the volume
- B) Decreasing the volume
- C) Increasing the temperature
- D) Decreasing the temperature
- 10) A 1.00 L flask contains a gaseous equilibrium system.
- The addition of reactants to this flask results in a
 - A) Shift to the left and decrease in the of products
 - B) Shift to the left and increase in the of products
 - C) Shift to the right and decrease in the of products
 - D) Shift to the right and increase in the of products
- 11) An equilibrium system shifts left when the
 - A) Rate of the forward reaction is equal to the rate of the reverse reaction
 - B) Rate of the forward reaction is less than the rate of the reverse reaction
 - C) Rate of the forward reaction is greater than the rate
 - of the reverse reaction
 - A) Rate of the forward reaction and the rate of the reverse reaction are constant
- 12) Consider the following equilibrium:

$2SO_{2(g)} + O_{2(g)} \rightleftharpoons 2SO_{3(g)} \Delta H = -198 \text{ kJ}$

There will be no shift in the equilibrium when

- A) More O₂ is added
- B) Catalyst is added
- C) The volume is increased
- D) The temperature is increased

13) Consider the following equilibrium:

 $N_2O_{4(g)} + 58 \text{ kJ} \rightleftharpoons 2NO_{2(g)}$

The equilibrium shifts right when

A) NO_2 is added

- B) N_2O_4 is removed
- C) The temperature is decreased
- D) The volume of the system is increased
- 14) Consider the following equilibrium:

 $2SO_{2(g)} + O_{2(g)} \rightleftarrows 2SO_{3(g)}$

Which of the following will shift the equilibrium to the right?

I. Adding more O_2
II. Adding more SO ₃
III. Adding a catalyst

A) I only

- B) III only
- C) I and II only
- D) II and III only

15) Consider the following equilibrium:

$$mergy + 2NaClO_{3(s)} \rightleftharpoons 2NaCl_{(s)} + 3O_{2(g)}$$

Which of the following will cause a shift to the left?

- A) adding more O_2
- B) adding more NaCl
- C) removing some NaClO₃
- D) increasing the temperature

16) Consider the following equilibrium:

 $CO_{(g)} + 2H_{2(g)} \Rightarrow CH_3OH_{(g)} + energy$ Which of the factors below would decrease the concentration of CH₃OH at equilibrium?

- A) an addition of CO
- B) an increase in H_2
- C) a decrease in the temperature
- D) an increase in the temperature
- 17) Consider the following equilibrium:

 $energy + 2NaClO_{3(s)} \rightleftharpoons 2NaCl_{(s)} + 3O_{2(g)}$

Which of the following will cause a shift to the right?

- A) adding more O_2
- B) adding more NaCl
- C) removing some NaCl_(s)
- D) increasing the temperature

18) Consider the following equilibrium:

 $2SO_{2(g)} + O_{2(g)} \rightleftharpoons 2SO_{3(g)}$

Which of the following will shift the equilibrium to the left?

I. Removing O ₂	
II. Adding more SO ₃	
III. Adding a catalyst	

- A) I only
- B) III only
- C) I and II only
- D) II and III only

19) Consider the following equilibrium:

 $N_2O_{4(g)} + energy \Rightarrow 2NO_{2(g)}$

How are N_2O_4 and NO_2 affected by the addition of He into the container at constant volume.

	$\underline{N_2O_4}$	\underline{NO}_2
A)	no change	no change
B)	no change	increases
C)	increases	decreases
D)	decreases	increases

20) Which of the following stresses will cause a shift to the reactants?

 $H_{2(g)} + Br_{2(g)} \rightleftharpoons 2HBr_{(g)} + energy$

- A) increase [Br₂]
- B) increase [H₂]
- C) decrease temperature
- D) increase temperature
- **21**) Which of the following stresses will cause a shift to the products?

 $H_{2(g)} + Br_{2(g)} \rightleftharpoons 2HBr_{(g)} + energy$

- A) decrease [Br₂]
- B) decrease [H₂]
- C) decrease temperature
- D) increase temperature
- **22**) Which of the following two stresses will each cause the system to shift to the left?

 $2SO_{2(g)} + O_{2(g)} \rightleftharpoons 2SO_{3(g)} + energy$

- A) decrease temperature and decrease [O₂]
- B) increase temperature and increase [SO₃]
- C) increase temperature and decrease [SO₃]
- D) decrease temperature and increase [SO₂]

23) $SrCO_{3(s)} + 215 \text{ kJ} \Rightarrow SrO_{(s)} + CO_{2(g)}$

Which of the following conditions would produce the greatest yield of $SrO_{(s)}$?

	Temperature	Pressure
A)	low	low
B)	low	high
C)	high	low
D)	high	high

24) The Haber Process is used to produce ammonia commercially according to the following equilibrium:

$N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)} + energy$

Which of the following conditions will produce the highest yield of ammonia?

- A) increase temperature and increase pressure
- B) increase temperature and decrease pressure
- C) decrease temperature and increase pressure
- D) decrease temperature and decrease pressure
- **25**) Consider the following reaction:

 $2SO_{2(g)} + O_{2(g)} \rightleftharpoons 2SO_{3(g)} \Delta H = -197 \text{ kJ/mol}$

If the volume is increased what happens to equilibrium?

- A) shifts to the right
- B) shifts to the left
- C) no shift
- D) shifts in the exothermic direction