Le Chatelier'	's Principle Worksheet #2
 In the following reaction, will t when equilibrium is reestablis are applied? 	
••	+ 3 H₂(g) ↔ 2 NH₃(g) + 22 kJ
NH₃(g) is added	N2(g) is removed
pressure is increased	Temperature is increased
 In which direction, left or right, changes are made? 	, will the equilibrium shift if the following
0	$H_2(g) \leftrightarrow N_2O(g) + H_2O(g) + 36 \text{ kJ}$
NO is added	The system is cooled
H ₂ is removed	Pressure is increased
N ₂ O is added	H ₂ is removed
3) In this reaction: $CO_2(g) + H_2(g)$) + heat ↔ CO (g) + H₂O (g)
Is heat absorbed or releas	ed by the forward reaction?
In which direction will the ϵ	equilibrium shift if these changes are made?
CO is added	Temperature is increased
CO2 is added	System is cooled
H ₂ is removed	Pressure is increased
Catalyst is added	_
4) In this reaction: 2 NO (g) + H ₂ (What will happen to the [H ₂ O] v stresses are applied?	(g) ↔N ₂ O (g) + H ₂ O (g) + heat when equilibrium is reestablished after these
Temperature is increased	
A catalyst is added	
Pressure is decreased	
NO is added	
N ₂ O is removed	-
	p. 210

5) How would an increase in pressure affect the [H2] in the following reactions?

	$2 H_2(g) + O_2(g) \leftrightarrow 2 H_2O (g)$)
	4 H ₂ (g) + Fe ₃ O ₄ (s) \leftrightarrow 3 Fe	(s) + 4 H ₂ O (I)
	$H_2(g) + Cl_2(g) \leftrightarrow 2 \text{ HCl } (g)$	
6) State Le	e Chatelier's Principle in your o	wn words.
,	on ore it reduced to iron metal:	oon monoxide occurs in a blast furnace
	• •	the direction of reaction when an
equilibriu	um mixture is disturbed by : Adding CO (g)	Removing CO ₂ (g)
	Adding Fe2O3 (s)	

8) For the reaction, $PCI_5(g) \leftrightarrow PCI_3(g) + CI_2(g)$ $\Delta H_{rxn} = +111 \text{ kJ}.$ Fill in the following table.

Change	Shifts Reaction Which Way?
add PCI₅	
remove Cl ₂	
add Ar	
decrease V (or increase P)	
increase T	
add catalyst	

9) For the reaction: 2HI(g)↔H2(g) + I2(g) △Hr×n = -51.8kJ Fill in the following table:

Change	Shifts Reaction Which Way?
add H ₂	
remove HI	
add Ne	
increase V (decrease P)	
decrease T	