Mini-Lesson

(only take notes if you need to, on a piece of binder paper)

How many atoms in a compound? H_2O Al_2S_3 $Mg_2(SO_4)_2$

Nuclear Chemistry!

Nuclear Fission

Carbon-14 Dating

- Atomic Fission (the bomb, nuclear power)
- Radon

• Chain Reactions

Subatomic Particles

- Protons- positive charge
 In the nucleus
 - Neutrons- neutral
 - Electrons negative charge

Outside the nucleus

Strong Force

- Normally particles with similar forces (both + or both -) would repel each other
 - -So why doesn't the nucleus totally fly apart from protons repelling each other?!
 - Strong Force

 Sometimes there are too many neutrons, and it makes the atom unstable

Radiation

- Radiation comes from the nucleus of an atom.
- Unstable nucleus emits (spits out) a particle or energy

Charge of Nuclear Particles

Penetrating Power of Radiation

Copy the symbols down

Туре	What is it?	Symbol	Charge	What Stops It
Alpha Particle	2 protons 2 neutrons	${}^{4}_{2}$ He ${}^{4}_{2}\alpha$	2+	Paper
Beta Particle	An electron	${\stackrel{0}{\scriptstyle -1}}eta$ ${\stackrel{0}{\scriptstyle -1}}e^{-}$	1-	Aluminum, wood, clothes
Gamma Ray	High speed energy waves	γ ${}^{0}_{0}\gamma$	0	Thick lead or concrete

How to write isotopes when doing nuclear chemistry

Alpha Decay

Beta Emission:

A beta particle is just like an e-.

When beta decay happens, the nucleus changes a neutron into a proton and an e-, and emits the e- ${}^{1}_{0}\mathbf{n} \rightarrow {}^{0}_{-1}\beta + {}^{1}_{1}\mathbf{p}$

Gamma rays:

These are dangerous EMR waves with no significant mass that are usually emitted with other types of radiation. They penetrate very deeply.

Gamma Radiation:

No change in atomic or mass number

 ${}^{11}_{5}\mathrm{B}^* \longrightarrow {}^{11}_{5}\mathrm{B} + {}^{0}_{0}\mathcal{V}$ boron atom in a high-energy state