Types of IMFs

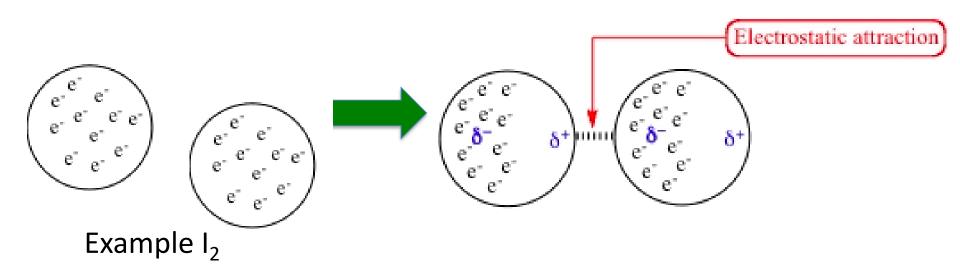
Get KCQ and Target set up!

INTER molecular forces (forces between neighboring molecules)

INTER molecular forces (forces between neighboring molecules)

London < Dipole-dipole < Hydrogen Dispersion bonding

WEAKEST


STRONGEST

"Van der Waals Forces" are London Dispersion Forces and Dipole-Dipole Forces added together

London Dispersion Forces

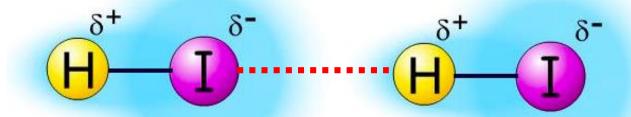
VERY WEAK and TEMPORARY!!!!

Caused by <u>temporary</u> <u>unequal</u> electron distribution that makes weak and <u>temporary</u> <u>dipoles</u>. Also called "instantaneous dipole"

London Dispersion Forces Continued...

LONDON
DISPERSION
FORCES BECAUSE
EVERYTHING HAS
ELECTRONS!

Bigger molecules will have more LDFs – more places to get temporary unequal electrons


C₈H₁₈ will have more LDFs than C₃H₈

Dipole - Dipole

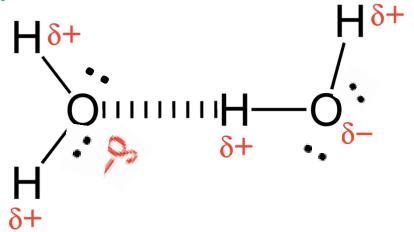
ONLY OCCURS IN POLAR MOLECULES

Partially negative portion of one polar molecule attracted to

Partially positive portion of the second polar molecule

Example:

2 molecules of HI


Hydrogen Bonding

A TYPE OF DIPOLE-DIPOLE!

(Strongest Kind of IMF!)

Must have:

"H-NOF:"

ATTRACTION BETWEEN:

the partially negative part of a <u>lone pair</u> on an N, O, or F, atom

_ _ _

Hydrogen end of an O-H, N-H, or F-H bond NO ... Is the molecule polar?

London Dispersion Forces (ONLY)

NO

Dipole-Dipole

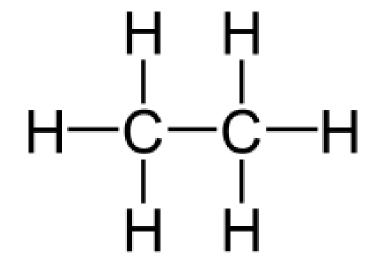
(and London dispersion)

YES

Does the molecule have any of the following bonds:
H-N H-O

H-F

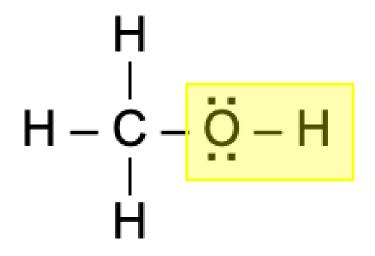
WITH LONE PAIR(S)!


YES

Hydrogen Bonds

(and Dipole-Dipole and London dispersion)

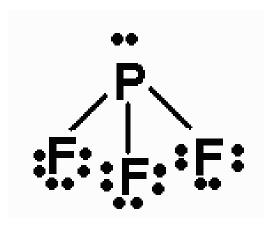
Molecule	Dominant IMF	Written Justification
C_2H_6		
CH ₃ OH		
PF ₃		
NH ₃		
H ₂ CO		
CH ₃ F		


Molecule	Dominant IMF	Written Justification
C_2H_6		
CH ₃ OH		
PF ₃		
NH ₃		
H ₂ CO		
CH ₃ F		

Non-polar

Only option is London Dispersion Forces!

Molecule	Dominant IMF	Written Justification
C_2H_6		
CH ₃ OH		
PF ₃		
NH ₃		
H ₂ CO		
CH ₃ F		

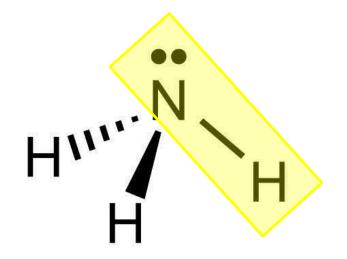


Polar

Has "H-NOF Lone Pair"

So it is an H-Bond

Molecule	Dominant IMF	Written Justification
C ₂ H ₆		
CH₃OH		
PF ₃		
NH ₃		
H ₂ CO		
CH ₃ F		

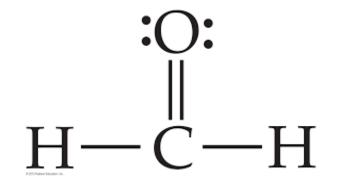

Remember that lone pairs on the center atom bend the molecule!

Polar

NO "H-NOF Lone Pair"

So it is Dipole-Dipole

Molecule	Dominant IMF	Written Justification
C_2H_6		
CH ₃ OH		
PF ₃		
NH ₃		
H ₂ CO		
CH ₃ F		

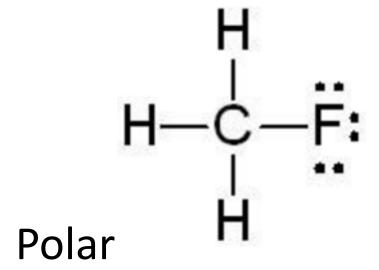

Remember that lone pairs on the center atom bend the molecule!

Polar

Has "H-NOF Lone Pair"

So it is an H-Bond!

Molecule	Dominant IMF	Written Justification
C ₂ H ₆		
CH ₃ OH		
PF ₃		
NH ₃		
H ₂ CO		
CH ₃ F		


Careful! The formula was "chunked" to try and give you a hint!

Polar

NO "H-NOF Lone Pair"
The H is not connected
to the oxygen!

So it is Dipole-Dipole!

Molecule	Dominant IMF	Written Justification
C ₂ H ₆		
CH ₃ OH		
PF ₃		
NH ₃		
H ₂ CO		
CH ₃ F		

NO "H-NOF Lone Pair"
The F is not connected
to the oxygen!

So it is Dipole-Dipole!

Crash Course – Liquids https://youtu.be/BqQJPCdmlp8

YouTube Link to Presentation https://youtu.be/NzUSb6QFaBk