#1 SORT BY: IONIC, COVALENT OR METALLIC	MgS	H_2S
K	CsBr	CH ₄
Re	NH ₄ NO ₂	PF ₅

#2 SORT BY: POLAR OR NON-POLAR	SiF ₄	SO
CO_2	H_2O	N ₂
CH ₃ OH	NH ₃	C_2H_6

#3 SORT BY: "DOMINANT" IMF PRESENT: DIPOLE-DIPOLE OR LONDON FORCES	SiF ₄	SO
CO ₂	H_2O	N ₂
CH ₃ OH	NH ₃	C_2H_6

#4 SORT BY: HYDROGEN BONDING OR NO HYDROGEN BONDING	C_2H_6	CH ₃ NH ₂
NaOH	KBr	HF
H ₂ O	CH ₃ CH ₂ OH	CH ₃ CH ₂ CH ₃

#5 SORT BY: DIPOLE-DIPOLE OR HYDROGEN BONDING	CH ₃ SH	H_2S
HF	H_2O	HBr
(CH ₃)(CO)(CH ₃)	N_2H_2	CH ₃ OH

#6 SORT BY: "DOMINANT" IMF PRESENT – LONDON, DIPOLE-DIPOLE, OR HYDROGEN BONDING	H_2S	N_2H_2
H ₂ O	CH ₄	N ₂
CO ₂	CH ₃ F	CH ₃ OH

#7 RANK FROM: LOWEST TO HIGHEST EXPECTED BOILING POINT	O ₂	CO
	SiH ₃ OH	KF
Diamond		

#8 RANK FROM: LOWEST TO HIGHEST EXPECTED BOILING POINT	N ₂	H_2
CO_2	F ₂	O ₂
CH ₄	12	Br ₂

IONIC	COVALENT	METALLIC
POLAR	NON-POALR	DIPOLE-DIPOLE

LONDON	HYDROGEN BONDING	NO HYDROGEN BONDING
LOWEST BOILING POINT	HIGHEST BOILING POINT	