

1) Draw the Lewis dot diagram of NH₃

2) Based on your drawing is NH₃ polar or non polar?

INTER molecular forces (forces between neighboring molecules)

Dipole - Dipole

ONLY OCCURS IN POLAR MOLECULES

Partially negative portion of one polar molecule <u>attracted to</u>

Partially positive portion of the second polar molecule

ATTRACTION BETWEEN:

the partially negative part of a lone pair on an O, F, or N atom Hydrogen end of an O-H, N-H, or F-H bond

Important Example of H-Bonding

Generic DNA picture

A·T base pair

G·C base pair

H bonding in protein shapes

Proteins – chain of amino acids Secondary structures: beta sheets and alpha helix

Hemoglobin protein

Alpha helix Beta

Beta sheets

London Forces

VERY WEAK and TEMPORARY!!!!

Caused by temporary **unequal** electron distribution that makes weak and temporary dipoles.

Interactions in solids

Combination of:

intramolecular AND intermolecular forces in a "large" or "bulk" scale

<u>3 types</u>

Ionic Lattice Metallic Network covalent

Ionic lattice - ions stack in an ordered fashion to form crystals

Example: NaCl

Metallic – Metal ions stack in an ordered fashion held together by the "sea of electrons" and the positive metal ions

Example: Fe

Network covalent – covalently bonded atoms in a continuous network

Example: Carbon

Diamonds

