Cardinal Rules for Balancing Chemical Reaction Equations

- 1) Get a pencil! Stay calm.
- Write the skeleton equation this means convert the names of chemicals into formulas.
- 3) Be sure that all formulas are written correctly.
- 4) Count atoms of each element on each side of the arrow to figure out what needs to be balanced.
- 5) Change ONLY coefficients to balance, NEVER change subscripts!
- 6) Reduce coefficients to lowest ratio. (i.e. 2-4, is 1-2)
- 7) Check your work when done.

Sample Problem:

Iron (II) chloride reacts with aluminum sulfate to form iron (II) sulfate and aluminum chloride.

Steps 2-3:

FeCl₂ + Al₂(SO₄)₃ → FeSO₄ + AlCl₃ (The formulas are correct, every + is cancelled out by a negative and vice versa. Now we balance...)

Step 4:

Reactants: Fe=1, Cl=2, Al=2, S=3, O=12 Products: Fe=1, Cl=3, Al=1, S=1, O=4

<u>Steps 5-6</u>:

 $\overline{3}$ FeCl₂ + Al₂(SO₄)₃ \rightarrow $\underline{3}$ FeSO₄ + $\underline{2}$ AlCl₃

<u>Step 7</u>:

Count atoms on either side of the arrow to make sure the equation is balanced! Reactants: Fe=3, Cl=6, Al=2, S=3, O=12 Products: Fe=3, Cl=6, Al=2, S=3, O=12 Yay! It is balanced! ©

Cardinal Rules for Balancing Chemical Reaction Equations

1) Get a pencil! Stay calm.

- Write the skeleton equation this means convert the names of chemicals into formulas.
- 3) Be sure that all formulas are written correctly.
- 4) Count atoms of each element on each side of the arrow to figure out what needs to be balanced.
- 5) Change ONLY coefficients to balance, NEVER change subscripts!
- 6) Reduce coefficients to lowest ratio. (i.e. 2-4, is 1-2)
- 7) Check your work when done.

Sample Problem:

Iron (II) chloride reacts with aluminum sulfate to form iron (II) sulfate and aluminum chloride.

<u>Steps 2-3</u>:

 $FeCl_2 + Al_2(SO_4)_3 \rightarrow FeSO_4 + AlCl_3$ (The formulas are correct, every + is cancelled out by a negative and vice versa. Now we balance...)

Step 4:

Reactants: Fe=1, Cl=2, Al=2, S=3, O=12 Products: Fe=1, Cl=3, Al=1, S=1, O=4

<u>Steps 5-6</u>:

<u>3</u> FeCl₂ + Al₂(SO₄)₃ \rightarrow <u>3</u> FeSO₄ + <u>2</u> AlCl₃

<u>Step 7</u>:

Count atoms on either side of the arrow to make sure the equation is balanced! Reactants: Fe=3, Cl=6, Al=2, S=3, O=12 Products: Fe=3, Cl=6, Al=2, S=3, O=12 Yay! It is balanced! ©