Name: Date: Period:

Type of Reaction	Example	What to Look For	
Synthesis	$A + B \rightarrow C$ $C + CO_2 \rightarrow CO_3$	 Two Reactants One Product	
Decomposition	$XY \rightarrow X + Y$	One Reactant Two Products	
Decomposition	$CaCO_3 \rightarrow CaO + CO_2$	• Two Floducts	
	$Hydrocarbon + O_2 \rightarrow CO_2 + H_2O$	Reactants = Hydrocarbon and O ₂	
Combustion	$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$	• Products = CO ₂ and H ₂ O	
Single	$A + BC \rightarrow AC + B$	Reactants = One element and One compound	
Replacement	$Al + Pb(NO_3)_2 \rightarrow Al(NO3)_2 + Pb$	Products = One element and One compound, but different ones	
Double	$AB + CD \rightarrow AD + CB$	Reactants = Two Compounds	
Replacement	$AgNO_3 + KCl \rightarrow AgCl + KNO_3$	 Products = Two Compounds but different ones 	

Balance and identify the type of reaction for each question:

Q#	Equation	Type of Reaction
1	$Sn + 2 Cl_2 \rightarrow SnCl_4$	synthesis
2	$2 \text{ Fe} + 3 \text{ Cl}_2 \rightarrow 2 \text{ FeCl}_3$	Synthesis
3	$4 \text{ Fe} + 3 \text{ O}_2 \rightarrow 2 \text{ Fe}2\text{O}_3$	Synthesis
4	$2 \text{ Al} + 3 \text{ Cl}_2 \rightarrow \text{Al}_2 \text{Cl}_6$	Synthesis
5	$CaO + 2 HCl \rightarrow CaCl_2 + H_2O$	Double replacement
6	$2 C_6 H_6 + 15 O_2 \rightarrow 12 CO_2 + 6 H_2 O$	Combustion
7	$Mg + 2 HCl \rightarrow MgCl_2 + H_2$	Single replacement
8	$2 \text{ Al(OH)}_3 \rightarrow \text{Al}_2\text{O}_3 + \text{3 H}_2\text{O}$	Decomposition
9	$Al + H_2SO_4 \rightarrow Al_2(SO_4)_3 + H_2$	Single replacement
10	$2 \text{ NaOH} + \text{ H}_2\text{SO}_4 \rightarrow \text{ Na}_2\text{SO}_4 + \text{ 2 H}_2\text{O}$	Double replacement

Using the following information, figure out what type of reaction is taking place and then figure out what the product or products will be. There is one of each type of reaction (You do not need to balance the equation).

Don't forget about which elements form diatomic molecules! H.N.O.F.Cl.Br.I

Q#	Equation	Type of Reaction	Product or Products
11	$C_6H_{12}O_6 + O_2 \rightarrow ?$	Combustion	CO ₂ and H ₂ O
12	$2NaCl \rightarrow ?$	Decomposition	Na and Cl ₂
13	$Mg + H_2O \rightarrow ?$	Single replacement	MgO and H ₂
14	$CO_2 + H_2O \rightarrow ?$	Synthesis	H ₂ CO ₃
15	$K_2(CO_3) + BaCl_2 \rightarrow ?$	Double replacement	KCI and BaCO ₃

Will be graded for accuracy Worth 25 Class Participation Points

- 1/2 point for each box, 30 boxes (15 points total)
- Name, Date, Period, 1 point each (3 points total)
- Staying on task during class, working efficiently (7 points total)

# of boxes correct:	x 1/2 pt each = _	pts	
Name, date, period:	x 1 pt each =	pts	
Stayed on task during class:	Yes No =	pts	
points/ 25 points			