Stoich Benchmark Practice Test ---Name _____

1.	4.2 moles of copper contains
a.	4.2 atoms
b.	2.53 X 10 ²⁴ atoms
с.	8.45 X 10 ₂₃ atoms
d.	2.53 X 10 ²⁴ g
e.	63.55g

2.	What is the mass of 125
	atoms of carbon in grams?
a.	12.01
b.	2.49X10 ⁻²¹ grams
C.	1.06X10 ²⁴ grams
d.	2.08X10 ⁻²² grams
e.	1501.25 grams

3.	A 2.1 mole sample of K ₂ O	
	reacts with H ₂ O	
	$K_2O + H_2O \rightarrow 2KOH$	
	How many moles of KOH are	
	formed assuming 100%	
	yield?	
a.	4.2 mole	
b.	1.05 mole	
C.	8.4 mole	
d.	2.1 mole	
e.	18.0 mole	

4.	Refer to the following	
	equation	
	$N_2O_3 + H_2O \rightarrow 2HNO_2$	
	How many moles of water	
	will produce 6.3 moles of	
	HNO ₂	
a.	6.3 mole	
b.	3.2 mole	
C.	12.6 mole	
d.	18.02 mole	
e.	45.02 mole	
a. b. c. d. e.	How many moles of water will produce 6.3 moles of HNO ₂ 6.3 mole 3.2 mole 12.6 mole 18.02 mole 45.02 mole	

5.	How many molecules of	
	H ₃ BO ₃ will be formed if 6.37 g	
	of water are reacted in this	
	unbalanced reaction.	
	$B_2O_3 + H_2O \rightarrow H_3BO_3$	
a.	1.62X10 ²⁴ molecules	
b.	1.42X10 ²³ molecules	
C.	5.23X10 ²³ molecules	
d.	2.34X10 ² molecules	
e.	1.42X10 ³ molecules	

6.	Refer to the following	
	unbalanced reaction.	
	$CaS_2 + O_2 \rightarrow CaS_2O_3$	
	What mass of oxygen in	
	required to produce 31.5g of	
	$CaS_2O_3?$	
a.	2.99g	
b.	1.99g	
с.	9.93g	
d.	5.05g	
e.	31.5g	

7.	How many moles of CH ₄ in	
	64g of CH ₄ ?	
a.	16.05mole	
b.	3.99mole	
C.	4.12mole	
d.	1.00mole	
e.	8.03mole	

8.	How many oxygen atoms are
	in 3.2 moles of O_2 ?
a.	5.34X10 ⁴ atoms
b.	1.93X10 ² atoms
C.	1.06X10 ²⁴ atoms
d.	1.93X10 ²⁴ atoms
e.	3.85X10 ²⁴ atoms

9.	The balanced reaction	
	$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$	
	4.5 moles of oxygen gas will	
a.	produce 2.3 moles of CH ₄	
b.	React with 2.3 moles of CH ₄	
C.	Produce 2.3 moles of H ₂ O	
d.	React with 4.5 moles of CH ₄	
e.	Produce 9.0 moles of CO ₂	

10.	10. How many moles of oxygen	
are reacted to produce 20.		
	g of iron(III) oxide (molar	
	mass = 159.7 g/mol) in the	
	unbalanced synthesis	
	reaction below.	
	$Fe + O_2 \rightarrow Fe_2O_3$	
a.	15.9 mole	
b.	0.19 mole	
C.	0.54 mole	
d.	0.42 mole	
e.	1.2 mole	

Per	Seat	#

11.	For the unbalanced reaction	
	$PCl_3 + H_2O \rightarrow H_3PO_3 + HCl$	
	How many grams of HCl can	
	be produced from 27.7 g of	
	PCl ₃ and excess water	
a.	7.35g	
b.	11.03g	
c.	22.06g	
d.	32.05g	
e.	27.7g	

12.	How many atoms in 35.4g of
	oxygen?
a.	2.21X10 ₂₃ atoms
b.	1.06X10 ²⁴ atoms
C.	6.02X10 ²³ atoms
d.	1.33X10 ²⁴ atoms
e.	3.54X10 ¹² atoms

What is the molar mass of
Al ₂ O ₃ ?
48.0g
102.0g
53.9g
43.0g
204.2g

14.	If 57.2g of water is produced
	in the reaction of C ₃ H ₈ with
	O_2 to form CO_2 and H_2O , How
	many grams of O_2 are
	reacted?
a.	42.5g
b.	81.2g
с.	101.6g
d.	127.0g
e.	250.5g

15.	For the unbalanced reaction
	$H_2S + Cl_2 \rightarrow S_8 + HCl$
	How many grams of HCl can
	be produced from 36.4 g of
	H_2S and excess chlorine gas
a.	80.45g
b.	38.99g
C.	116.79g
d.	38.93g
e.	77.86g

Stoich Benchmark Practice Test ---Name _____

16.	How many atoms of chlorine
	are in 62.3g of chlorine?
a.	1.06X10 ²⁴ atoms
b.	1.76X10 ²⁴ atoms
c.	6.23X10 ²⁴ atoms
d.	6.12X10 ²⁴ atoms
e.	1.00X10 ²⁴ atoms
17	If 36.1g of CO_2 is produced in

1/.	II 50.1g of CO ₂ is produced in
	the reaction of
	$Glucose(C_6H_{12}O_6)$ with O_2 to
	for CO_2 and H_2O , How many
	grams of H_2O are produced
	in this reaction
a.	44.34g
b.	11.09g
C.	88.69g
d.	14.78g
e.	3.70g

18.	The Molar mass of NaCl is
a.	70.6g
b.	58.4g
C.	45.6g
d.	22.9g
e.	35.4g

19.	What is the molar mass of
	copper(II) sulfate?
a.	64.0g
b.	63.6g
с.	111.6g
d.	159.6g
e.	95.3g

20.	The balanced equation
	$N_2 + 3H_2 \rightarrow 2NH_3$ reacts 3.4
	moles of N ₂
a.	reacting with 3.4 moles of H_2
b.	producing 6.8 moles of NH ₃
C.	reacting with 6.8 moles of H_2
d.	producing 10.2 moles of NH ₃
e.	reacting with 3.4 moles of
	NH ₃

21.	How many moles of oxygen and produced in the decomposition of 45.3g of potassium chlorate (molar mass = 122.54g/mol) in the
	unbalanced equation below. $KClO_3 \rightarrow KCl + O_2$
a.	12.25 mole
b.	0.45 mole
C.	1.00 mole
d.	0.55 mole
e.	2.55 mole

22.	How many molecules of
	water will be produced
	when 5.21g of methane are
	reacted in the following
	unbalanced reaction
	$CH_4 + O_2 \rightarrow CO_2 + H_2O$
a.	3.90 X 10 ² molecules
b.	1.45 X 10 ²³ molecules
C.	2.34 X 10 ²³ molecules
d.	4.90 X 10 ³ molecules
e.	3.90 X 10 ²³ molecules

23.	Refer to the following
	unbalanced reaction
	$C_2H_6 + O_2 \rightarrow CO_2 + H_2O$
	What mass of oxygen is
	required to react completely
	with 3.5g of C_2H_6 ?
a.	7.5g
b.	13.03g
C.	3.72g
d.	24.02g
e.	32.00g

24.	How many atoms are in 5.4
	moles of NO ₂ ?
a.	3.25X10 ²⁴ atoms
b.	9.75X10 ²⁴ atoms
C.	5.40X10 ²³ atoms
d.	6.00X10 ⁴ atoms
e.	1.46X10 ² atoms

25.	Convert 25.3g of NH ₃ to
	moles of NH ₃ .
a.	2.83mole
b.	2.53mole
с.	1.48mole
d.	1.00mole
e.	0.5moles

Per	Seat	#
		_

26.	Refer to the following equation Al(OH) ₃ + NaOH → NaAlO ₂ + 2H ₂ O How many moles of water will be produced in 25 moles of sodium hydroxide are completely reacted?
a.	2 mole
b.	7.0 mole
с.	12.5 mole
d.	25 mole
e.	50 mole

27.	1.5 moles of NH ₄ HCO ₃ react
	with NaCl in the equation:
	NaCl + NH ₄ HCO ₃ \rightarrow NaHCO ₃
	+ NH ₄ Cl
	How many moles of NH ₄ Cl
	are formed assuming 100%
	yield?
a.	3.0 mole
b.	1.5mole
C.	4.2mole
d.	0.75 mole
e.	2.5 mole

28.	Calculate the molar mass of
	ammonium chloride?
a.	70.4g
b.	28.0g
c.	45.5g
d.	83.2g
e.	53.5g

29.	What is the mass of 1234
	atoms of nitrogen?
a.	$1.73X10^4 \mathrm{g}$
b.	4.32X10 ⁻²⁴ g
C.	1.40X10 ⁻²⁰ g
d.	1060 g
e.	2.87 X 10-20 g

30.	8.2 moles of fluorine
	contains
a.	0.43g
b.	6.02 X 10 ²³ g
C.	453 atoms
d.	155.8g
e.	1.56 X 10 ²⁴ atoms