

Challenge Mole Problem!

Using your knowledge of mole calculations and unit conversions,

determine how many atoms there are in 1 gallon of gasoline. Assume that the molecular formula for gasoline is C_6H_{14} and that the density of gasoline is approximately 0.85 grams/mL. You need to find all your conversion factors on your own.

Challenge Mole Problem!

Using your knowledge of mole calculations and unit conversions,

determine how many atoms there are in 1 gallon of gasoline. Assume that the molecular formula for gasoline is C₆H₁₄ and that the density of gasoline is approximately 0.85 grams/mL. You need to find all your conversion factors on your own.

Challenge Mole Problem!

Using your knowledge of mole calculations and unit conversions,

determine how many atoms there are in 1 gallon of gasoline. Assume that the molecular formula for gasoline is C_6H_{14} and that the density of gasoline is approximately 0.85 grams/mL. You need to find all your conversion factors on your own.

Using your knowledge of mole calculations and unit conversions,

determine how many atoms there are in 1 gallon of gasoline. Assume that the molecular formula for gasoline is C₆H₁₄ and that the density of gasoline is approximately 0.85 grams/mL. You need to find all your conversion factors on your own.

Challenge Mole Problem!

Using your knowledge of mole calculations and unit conversions,

determine how many atoms there are in 1 gallon of gasoline. Assume that the molecular formula for gasoline is C₆H₁₄ and that the density of gasoline is approximately 0.85 grams/mL. You need to find all your conversion factors on your own.