Stoichiometry Worksheet #3

- 1) Given the following equation: $2 C_4 H_{10} + 13 O_2 - > 8 CO_2 + 10 H_2O$, show what the following molar ratios should be. a. $C_4 H_{10} / O_2$ b. O_2 / CO_2 c. O_2 / H_2O d. $C_4 H_{10} / CO_2$ e. $C_4 H_{10} / H_2O$
- 2) Given the following equation: 2 KClO₃ ---> 2 KCl + 3 O₂
 a. How many moles of O2 can be produced by letting 12.00 moles of KClO₃ react?
- 3) Given the following equation: 2 K + Cl2 ---> 2 KCl
 a. How many grams of KCl is produced from 2.50 g of K and excess Cl₂ ?
 b. How many grams of KCl is produced from 1.00 g of Cl₂ and excess K ?
- 4) Given the following equation: $Na_2O + H_2O ---> 2 NaOH$
 - a. How many grams of NaOH is produced from 1.20 x 102 grams of Na₂O?
 b. How many grams of Na₂O are required to produce 1.60 x 10² grams of NaOH?
- 5) Given the following equation: 8 Fe + $S_8 \rightarrow 8$ FeS
 - a. What mass of iron is needed to react with 16.0 grams of sulfur?b. How many grams of FeS are produced?
- 6) Given the following equation: 2 NaClO₃ ---> 2 NaCl + 3 O_2
 - a. 12.00 moles of NaClO₃ will produce how many grams of O₂?
 - b. How many grams of NaCl are produced when 80.0 grams of O_2 are produced?
- 7) Given the following equation: Cu + 2 AgNO₃ ---> Cu(NO₃)₂ + 2 Ag
 a. How many moles of Cu are needed to react with 3.50 moles of AgNO₃?
 b. If 89.5 grams of Ag were produced, how many grams of Cu reacted?
- 8) Molten iron and carbon monoxide are produced in a blast furnace by the reaction of iron(III) oxide and coke (pure carbon). The reaction is: $Fe_2O_3 + 3 C ---> 2 Fe + 3 CO$
 - a. If 25.0 kilograms of pure $\rm Fe_2O_3$ is used, how many kilograms of iron can be produced?
- 9) The average human requires 120.0 grams of glucose ($C_6H_{12}O_6$) per day. The photosynthetic reaction is: 6 CO₂ + 6 H₂O ---> C₆H₁₂O₆ + 6 O₂
 - a. How many grams of CO2 (in the photosynthesis reaction) are required for this amount of glucose?
- 10) Given the reaction: $4 \text{ NH}_3(g) + 5 \text{ O}_2(g) ---> 4 \text{ NO}(g) + 6 \text{ H}_2\text{O}(l)$ When 1.20 mole of ammonia reacts, the total number of moles of products formed is: a) 1.20 b) 1.50 c) 1.80 d) 3.00 e) 12.0

Stoichiometry Worksheet #3

- 1) Given the following equation: $2 C_4 H_{10} + 13 O_2 - > 8 CO_2 + 10 H_2O$, show what the following molar ratios should be. a. $C_4 H_{10} / O_2$ b. O_2 / CO_2 c. O_2 / H_2O d. $C_4 H_{10} / CO_2$ e. $C_4 H_{10} / H_2O$
- 2) Given the following equation: 2 KCIO₃ ---> 2 KCI + 3 O₂
 a. How many moles of O2 can be produced by letting 12.00 moles of KCIO₃ react?
- 3) Given the following equation: 2 K + Cl2 ---> 2 KCl
 - a. How many grams of KCl is produced from 2.50 g of K and excess Cl_2 ?
 - b. How many grams of KCI is produced from 1.00 \ddot{g} of Cl₂ and excess K ?
- 4) Given the following equation: Na₂O + H₂O ---> 2 NaOH
 - a. How many grams of NaOH is produced from 1.20 x 102 grams of Na₂O?
 - b. How many grams of Na₂O are required to produce 1.60 x 10^2 grams of NaOH?
- 5) Given the following equation: 8 Fe + $S_8 \rightarrow 8$ FeS
 - a. What mass of iron is needed to react with 16.0 grams of sulfur?
 - b. How many grams of FeS are produced?
- 6) Given the following equation: 2 NaClO₃ ---> 2 NaCl + 3 O_2
 - a. 12.00 moles of NaClO₃ will produce how many grams of O_2 ?
 - b. How many grams of NaCl are produced when 80.0 grams of O_2 are produced?
- 7) Given the following equation: Cu + 2 AgNO₃ ---> Cu(NO₃)₂ + 2 Ag
 a. How many moles of Cu are needed to react with 3.50 moles of AgNO₃?
 b. If 89.5 grams of Ag were produced, how many grams of Cu reacted?
- 8) Molten iron and carbon monoxide are produced in a blast furnace by the reaction of iron(III) oxide and coke (pure carbon). The reaction is:
 Fe₂O₃ + 3 C ---> 2 Fe + 3 CO
 - a. If 25.0 kilograms of pure $\rm Fe_2O_3$ is used, how many kilograms of iron can be produced?
- 9) The average human requires 120.0 grams of glucose ($C_6H_{12}O_6$) per day. The photosynthetic reaction is: 6 CO₂ + 6 H₂O ---> C₆H₁₂O₆ + 6 O₂
 - a. How many grams of CO2 (in the photosynthesis reaction) are required for this amount of glucose?
- 10) Given the reaction: $4 \text{ NH}_3(g) + 5 \text{ O}_2(g) ---> 4 \text{ NO}(g) + 6 \text{ H}_2\text{O}(l)$ When 1.20 mole of ammonia reacts, the total number of moles of products formed is: a) 1.20 b) 1.50 c) 1.80 d) 3.00 e) 12.0