KCQ - Heating and Cooling Curves I can use heating and cooling curves to help calculate the energy changes during phase changes

What do they show us?

- Heating or cooling \rightarrow the sloped parts of graph
- Phase changes \rightarrow the flat parts of graph

Heating Curve

Cooling Curve

Why are some areas sloped and some flat?

Heating	Phase Changes	

(Cooling would just be the opposite of these things!)

Why are some areas sloped and some flat?

Heating	Phase Changes	
lssue:	Issue:	
All the energy is going	All the energy is going	
towards SPEEDING UP	towards SPREADING OUT	
the molecules	the molecules	
Results in a temperature change	Results in NO temperature change	

(Cooling would just be the opposite of these things!)

How is our math changed by NO $\Delta T?$

HEATING/COOLING

- $Q = mC\Delta T$
- C = J/g°C → Has a temperature component.
- So.... Cant use it for phase changes

PHASE CHANGES

- $\Delta T = 0$ BUT Q = 0
- Get rid of ΔT, and replace C with something else
- Q = mL
- L = "Latent Heat" → J/g
 The energy required to phase change one gram of substance

Specific Heat and Latent Heat Labels

HEATING/COOLING

- C_{solid}
- C_{liquid}
- C_{gas}
- Always positive values

PHASE CHANGES

- L_{fusion}
- L_{vaporization}
- <u>Positive if endothermic</u> process (melting/vaporizing)
- Negative if exothermic process (condensing/freezing)

Values to Memorize for Water

Heating/Cooling		Phase Changes		
C _{ice}	2.09 J/g°C	L fus	334 J/g	
C _{liq}	4.18 J/g°C	Lvap	2260 J/g	
C _{steam}	1.87 J/g°C	L is (+) if heating up and (–) if cooling down!		

Completely Labeled Heating Curve

YouTube Link to Presentation

<u>https://youtu.be/5ElksSZfU_M</u>