<u>Jumpstart</u>

- 1) Get the note taking sheet from my front desk.
- 2) Glue it in and get the target and KCQ boxes set up on p.199

Introduction to Thermochemistry

Thermochemistry

The study of **ENERGY TRANSFER** in the form of heat during chemical reactions and physical changes.

Deals with: energy, temperature, heat

What is energy?

The ability to do WORK

Potential Energy:

Stored energy DUE TO position or composition

Kinetic Energy:

Energy DUE TO motion

1st Law of Thermodynamics is just like the Law of Conservation of Mass!

You cannot create or destroy energy.

If something loses energy, something else has to gain it!

#3

Energy and Mass are Related!

E=mc²
you can convert between
energy and mass!

Temperature vs. Heat Temperature:

A measure of molecular movement

Deals with: only movement

Heat:

Energy that can be transferred due to the molecular movement.

Deals with: movement AND the <u>amount</u> and type of molecules

Which has more heat?

Which way does heat flow?

#6

Endothermic

When SYSTEM (reaction) ABSORBS HEAT

What do you feel???

When a SYSTEM (reaction) ABSORBS HEAT FROM YOU (you are the surroundings)

YOU FEEL COLD!!!!!

Exothermic

When a SYSTEM (reaction) RELEASES HEAT

What do you feel???

When a SYSTEM (reaction) RELEASES HEAT TOWARDS YOU (you are the surroundings)

YOU FEEL HOT!!!!!

Hotor Cold ALL depends on PERSPECTIVE!!!

Yours or the reactions?

#9 lemperature

- Average amount of energy in motion
 - Measured with a thermometer

Hotter → higher temp → more motion Colder → lower temp → less motion

Which unit for temperature?

Fahrenheit

Too annoying to use! Forget about it!

Celsius

Usually used in science class.

Easy to remember freezing and boiling point.

<u>Kelvin</u>

An "absolute" temperature scale.

0 K means NO molecular motion!

"Zero means zero!"

Used for some specific calculations

Converting between C and K

$$K = {}^{\circ}C + 273$$

Practice!

- 1) 45 °C \rightarrow K
- 2) -20 $^{\circ}$ C \rightarrow K
- 3) 350 K \rightarrow °C
- 4) 125 K \rightarrow °C

Practice!

- 1) 45 °C \rightarrow K = 318 K
- 2) -20 °C \rightarrow K = 253 K
- 3) 350 K \rightarrow °C = 77 °C
- 4) 125 K \rightarrow °C = -148 °C