<u>#4 - SELF-ASSESS:</u> Practice Quiz to See What You Remember

Directions

- 1. Print this document. See Summer Assignment Cover Sheet for a tip on printing double sided if your printer doesn't do it automatically!
- 2. Using ONLY a periodic table and a non-graphing scientific calculator, complete the following questions. Do NOT peek at the internet, your Honors Chem notes, etc. See what you *actually* remember from Honors Chem!
- 3. USE BINDER PAPER FOR ALL MATH PROBLEMS! STAPLE TO THE BACK OF THIS DOCUMENT!
- 4. Once you have completed the questions, use the answer key at the end to check your work. Use a **<u>GREEN PEN</u>** to show your corrections.
- 5. For each topic, WRITE DOWN how many you got correct in the box for that topic.
- 6. Use the <u>"REVIEW TASK CHECKLIST</u>" to determine what review work needs to be completed for each of the topics. The class website will have what you need to do the tasks. <u>www.mychemistryclass.net</u>
- 7. Use the "Evidence of Self Study" paper to show proof that you did the tasks. Show me EVERYTHING you did to review and get caught up!
- 8. <u>BE HONEST</u>...don't say you did better than you actually did to get out of doing the review work. You should WANT to do anything and everything possible to enter AP Chemistry on a strong foot. Cutting corners now will only cause you to struggle later! Make a grownup decision to set yourself up for success. Show me you can do that.

	Review Task Checklist	
# Correct	Review Tasks to Accomplish	Some Useful Links to Help with Review Tasks
4 out of 4	Skim through the corresponding lecture PDFJot down a few reminders about the topic	General class website: <u>www.mychemistryclass.net</u>
3 out of 4	 Skim through the corresponding lecture PDF Jot down a few reminders about the topic Find and do 3 practice problems (from Honors Chem Worksheets, the internet, textbook, etc) 	 Honors tab on class website: <u>http://mychemistryclass.net/honorschem.html</u> PDFs of Lectures: <u>http://mychemistryclass.net/HCtabloofcontents.html</u>
2 out of 4	 Watch the corresponding YouTube lecture video(s) Jot down some notes from the video Do 3 practice problems (from Honors Chem Worksheets, the internet, textbook, etc) 	 YouTube Links: at the end of the Lecture PDFs or on YouTube Channel directly if that is easier: https://tipyurl.com/uc23pimb
1 out of 4	 Watch the corresponding YouTube lecture video(s) Jot down some notes Do 5 practice problems (from Honors Chem Worksheets, the internet, textbook, etc) 	 Packets of Worksheet problems from Honors Chemistry: <u>http://mychemistryclass.net/HColdrainbowpackets.html</u> OpenStax Textbook:
0 out of 4	 Watch the corresponding YouTube lecture video(s) Jot down some notes Search the free "OpenStax" or "CK-12" textbooks for the topic and spend some time reading up about it. Jot down some notes while reading Do 5 practice problems (from Honors Chem Worksheets, the internet, textbook, etc) 	CK-12 Textbook: https://tinyurl.com/5a8krxc4

Turned in Monday of the 2nd Week of School!

Seat #:

Topic Lecture Note Titles, Questions, and Score Use binder paper to show your work for <u>ALL</u> math problems!											
N3 – Significant Figures					/ 4						
 Using the rules of significating figures, calculate the follow 6.167 + 70 = A) 76 B) 80 C) 76.167 D) 77 	nt 2. The number 14.809 rounded to three significant figures is A) 15.0 B) 14.9 C) 14.81 D) 14.8	1 3. How m s there in (4.321/2 A) 1 B) 2 C) 3 D) 4	any significant figures the result of the calcu $2.8) \times (6.9234 \times 10^5)$	are 4 lation?	 4. The result of the calculation has how many significant figures? (0.4333 J/g °C) (33.12°C - 31.12°C)(412.1 g) A) 1 B) 2 C) 3 D) 4 						
N5 – Atomic Numbers and	Isotopes				/ 4						
 5. How many electrons are present in a fluorine, F, atom? A) 9 B) 10 C) 11 D) 18 	6. $54 p^+$, $54 e^-$, and $78 n^0$ is A) ${}^{132}_{54}Xe$ B) ${}^{132}_{55}Cs$ C) ${}^{78}_{54}Xe$ D) ${}^{54}_{78}Pt$	 7. How many proand neutrons, have? A) 13, 13, 1 B) 13, 10, 1 C) 13, 13, 2 D) 13, 10, 2 	otons, electrons, does ²⁷ Al ³⁺ 14 14 27 27	 8. An element's most stable ion forms an ionic compound with chlorine having the formula XCl₂. If the ion of X has a mass of 89 and 36 electrons, what is the identity of X, and how many neutrons does it have? A) Kr, 53 neutrons B) Kr, 55 neutrons C) Se, 55 neutrons D) Sr, 51 neutrons 							
N10 - Introduction to Electr	ons, N12 - Writing e- Configs, N13 - Co	onfigs of lons &	Noble Gas Configs		/ 4						
9. State the maximum number of electrons allowed in each. a. 4 th principal energy level b. any d sublevel c. a 2p orbital10. The configuration for sulfur A) $1s^22s^22p^63s^23p^2$ B) $1s^22s^22p^63s^23p^4$ C) $1s^22s^22p^63s^5$ D) $1s^22s^22p^63s^23p^5$			11. Draw the orbita ground state	l diagram for t e of oxygen. 2	a for the gen. a for the 12. The electron configuration of Cr^{3+} i A) $[Ar]4s^23d^1$ B) $[Ar]4s^13d^2$ C) $[Ar]3d^3$ D) $[Ar]4s^23d^4$						
N15 - Periodic Trends					/ 4						
 13. Which of the following exhibits the correct orders for both atomic radius and ionization energy, respectively? (smallest to largest) A) S, O, F, and F, O, S B) F, S, O, and O, S, F C) S, F, O, and S, F, O D) F, O, S, and S, O, F 	 14. Which is false? A) Elements in the same column have similar reactivities since their valence e-'s tend to be located in the same types of orbitals. B) Isoelectronic ions must have the same electron configuration. C) Atomic radius increases going across a period from left to right because the number of e-'s increases, so they are located further from the nucleus. D) It takes more energy to remove an electron from Li than from Cs because the valence e-'s in Li are located closer to the 	$\begin{array}{c ccccc} & 15. & \text{Order} & \\ & & & \text{small} \\ \hline e & & & \text{As}^{3-}, \\ & & \text{A}) & \text{As}^{3-} < \\ & & \text{B}) & \text{Sr}^{2+} < \\ & & \text{C}) & \text{As}^{3-} < \\ & & \text{C}) & \text{As}^{3-} < \\ & & \text{S} & & \text{D}) & \text{Sr}^{2+} < \\ \hline \end{array}$	the following ions fro est to largest atomic s Se^{2-} , Sr^{2+} , Rb^+ , Br^- $Se^{2-} < Br^- < Rb^+ < Sr$ $Rb^+ < As^{3-} < Se^{2-} < B$ $Se^{2-} < Br^- < Sr^{2+} < Rt$ $Rb^+ < Br^- < Se^{2-} < As$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	 5. Which is true? The Kr 1s orbital is smaller than the He 1s orbital because Kr's p and d orbitals crowd the s orbitals. The Kr 1s orbital is larger than the He 1s orbital because Kr has more e-'s. The Kr 1s orbital is smaller than the He 1s orbital because Kr's nuclear charge draws the electrons closer. b) The Kr 1s orbital and He 1s orbital are the same size because both s orbitals can only have two electrons. 						

nucleus.

N16 - Bonding and Naming, N17 - Writing Neutral Compounds/ 4										
 17. The correct formula for amm A) NH₄SO₃ B) NH₄SO₄ C) (NH₄)₂SO₃ D) (NH₄)₂SO₄ 	 18. The correct name for FeO is A) iron oxide B) iron(II) oxide C) iron(I) oxide D) iron monoxide 		19. Give the formula for mercury(II) sulfide.		2	 20. The correct name for P₂O₅ is A) phosphorus(II) oxide B) phosphorus(V) oxide C) diphosphorus oxide D) diphosphorus pentoxide 				
N18 - Lewis Structures, N19 – V	/SEPR						/ 4			
 21. Which of the following has a double bond? A) H₂O B) C₂H₂ C) C₂H₄ D) CN⁻ 	21. Which of the following has a double bond?22. Draw the LewinA) H_2O B) C_2H_2 C) C_2H_4 			$\begin{array}{c c} \mbox{'is Structure for NH}_4^+ \\ \mbox{'is Structure for NH}_4^+$			$\begin{array}{c c} BH_3 & XeCl_4 & SF_4\\ as bond angles of 109.5°\\ 3r_2H_2 \\ H_3 \\ eCl_4 \\ S_4 \end{array}$			
N20 – Polarity, N21 – IMFs							/ 4			
25. How many are nonpolar? CO NH ₃ CO ₂ CH A) 1 B) 2 C) 3 D) 4	 Order from weakest to strongest . A) dipole-dipole, London Dispersion, ionic, and hydrogen-bonding B) London Dispersion, dipole-dipole, hydrogen-bonding, ionic C) hydrogen-bonding, dipole-dipole, London Dispersion, and ionic D) dipole-dipole, ionic, London Dispersion, and hydrogen-bonding 			 27. Which of the for substances wou have the lowest A) diamond B) methane, C C) sodium nitri D) glycerine, C 	ollowing Ild you expect to t boiling point? CH4 rate, NaNO ₃ C ₃ H ₅ (OH) ₃	 28. Which would you expect to have the highest boiling point? A) F₂ B) Cl₂ C) Br₂ D) I₂ 				
N22 - Balancing Equations, N23	B - Types of React	ions					/ 4			
 29. All of the following are clues that a chemical rxn has taken place except A) A color change occurs. B) A solid forms. C) The reactant is smaller. D) Bubbles form. 	30. Balance what the substance $Pb(NO_3)_2 + \frac{1}{2}$ A) 5 B) 4 C) 3 D) 2	at is the number in from e in bold type? $K_2CO_3 \rightarrow PbCO_3 + K$	t of 31. Balan coeffi NO ₃ FeO A) B) C) D)	ice. Detection $(s) + C$ (s) + C 3 4 6 7	ermine the sum of the $D_2(g) \rightarrow Fe_2O_3(g)$	s) 32. Sodiu produce a hydroger for this re	um metal reacts with water to aqueous sodium hydroxide and n gas. Write the balanced equation eaction.			
N24 - Predicting Products (and	net ionic)						/ 4			
33. Write the balanced molecular e between aqueous solutions of lithiu hydroxide.	quation for the reac im phosphate and so	tion 34. Wh odium A) c B) c	hich drawing best refate when they are not considered at the second strain term in the second strain term is the second s	Presents nixed in \rightarrow so_4^2 r r	s the mixing of aqueo stoichiometric amou $C^{\Gamma} C^{\Gamma} K^{+} C^{2+}$ $K^{+} C^{2+}$ $K^{+} C^{-}$ C) $K^{+} C^{-}$ C)	us calcium chlo nts (neither read Ca^{2*} + Cr^{-} +	bride with aqueous potassium ctant is limiting)? \downarrow^{K^*} \rightarrow \downarrow^{CI^*} \downarrow^{K^*} \downarrow^{CI^*} \downarrow^{K^*}			

35. Predict the products and balance $KI + Cl_2 \rightarrow$	the equation	36.Write the molecular equation, the complete ionic equation, and the net ionic equation for the following reaction: Aqueous solutions of copper(II) nitrate and sodium hydroxide are mixed to form solid copper(II) hydroxide and aqueous sodium nitrate.					
N25 - Molar Mass and Molar Co	nversions, N26 - Mole Ratio a	nd Stoichiometry	y		/ 4		
 37. Which represents the greatest number of atoms? A) 50.0 g Al B) 50.0 g Cu C) 50.0 g Zn D) 50.0 g Fe 	 38. The number of grams in 1.15 mol of sodium carbonate is A) 92.2 g B) 0.0109 g C) 95. g D) 122. g 	39. $Cu(s) + 2AgNO_3(aq) \rightarrow 2Ag(s) + Cu(NO_3)_2(aq)$ what number of grams of silver can be produced from the reaction of 33.9 g of copper? A) 115 g Ag B) 57.6 g Ag C) 28.8 g Ag D) 39.9 g Ag			 40. If 22.5 g of CO₂ is produced in the reaction of C₂H₂ with O₂ to form CO₂ and H₂O, how many grams of H₂O are produced? A) 9.21 g B) 4.61 g C) 18.4 g D) 3.07 g 		
N27 - Limiting Reagent Stoichior	netry				/ 4		
41. $2Na(s) + 2H_2O(l) \rightarrow$ $2NaOH(aq) + H_2(g)$ What number of moles of H ₂ will be produced when 4.0 mol Na is added to 1.4 mol H ₂ O? A) 0.7 mol B) 2.8 mol C) 2.0 mol D) 1.4 mol	42. $2A + B \rightarrow C$. In which cas limiting reactant? (a) (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	e is B the	 43. Which of the would product amount of product amount of product went to comp N₂(g) + 3 A) 3 moles of N B) 1 mole of N C) 5 moles of N D) All would product amount of product of product of product of product of product of the second s	following mixtures ce the greatest oduct, assuming all oletion $H_2(g) \rightarrow 2NH_3(g)$ V_2 and 3 moles of H_2 V_2 and 6 moles of H_2 V_2 and 3 moles of H_2 roduce the same roduct.	44. A 2.00 g sample of NH ₃ reacts with 4.00 g of O ₂ 4 NH ₃ + 5 O ₂ \rightarrow 4 NO + 6 H ₂ O If O ₂ is the limiting reactant how much excess reactant remains after the rxn is done? A) 0.30 g B) 0.70 g C) 0.55 g D) 0.43 g		
N31 - Basic Gas Laws, N32 - Idea	l Gas Law, N33 - Dalton's Law	of Partial Pressu	ures		/ 4		
 45. Consider a gas at 1.00 atm in a 5.00-L container at 20.°C. What pressure does the gas exert when transferred to a volume of 2.30 L at 43°C? A) 4.67 atm B) 2.02 atm C) 0.371 atm D) 2.34 atm 	 46. Determine the pressure exerted by 2.05 mol of gas in a 2.92-L container at 32°C. A) 1.84 atm B) 51.3 atm C) 17.6 atm D) 5.38 atm 	 47. The valve to tank containation at m and a licontaining opened. Cain pressure in A) 3 atm B) 4 atm C) 7 atm D) 15 atm 	between a 5-L ning a gas at 9 IO-L tank a gas at 6 atm is loculate the final the tanks.	 48. Which of the following is <i>not</i> a postulate of the kinetic molecular theory? A) Gas particles have most of their mass concentrated in the nucleus of the atom. B) The moving particles undergo perfectly elastic collisions with the walls of the container. C) The forces of attraction and repulsion between the particles are insignificant. D) The average kinetic energy of the particles is directly proportional to the absolute temperature. 			

N34 - Gas Stoichiometry							/ 4		
49. $C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2(g) +$ What volume of oxygen gas at needed to react with 3.94 mol C_2H_4 ? (Ignore significant figure this problem.) A) 11.8 L B) 29.4 L C) 265 L D) 88.3 L	It is found that 250. mL of a gas at STP has a mass of 1.36 g. What is the molar mass? A) 122 g/mol B) 5.44 g/mol C) 11.2 g/mol D) 22.4 g/mol	51. You p hydro massl volum comp $N_2(g)$ A) B) C) D)	place 15.0 gen gas in ess, friction the of the c he after the letion? As $+ 3H_2(g)$ 11.90 L 1.38 L 6.41 L 8.92 L	g of nitrogen gas and 15.0 g a container fitted with a onless piston. If the original ontainer is 10.3 L, what is the reaction has run to sume constant temperature. $\rightarrow 2NH_3(g)$	of 52 ne	 52. 2H₂O₂(aq) → 2H₂O(l) + O₂(g) Suppose 143.0 g of hydrogen peroxide decomposes and all of the oxygen gas is collected in a balloon at 1.00 atm and 25°C. Determine the volume of the balloon. A) 4.31 L B) 102.8 L C) 51.4 L D) 8.62 L 			
N35 - Specific Heat, N36 – Calo	orimetry						/ 4		
 53. A 5.10-g sample of iron is head from 36.0°C to 75.0°C. The amount of energy required is 89.51 J. The specific heat capacity of this sample of iron A) 1.78 × 10⁴ J/g °C B) 2.22 J/g °C C) 0.234 J/g °C D) 0.450 J/g °C 	ated 54. Assum added origin be the water A) 11 B) 49 C) 62 D) 34	the that 248.3 J of h to 5.00 g of water ally at 23.0°C. Wh final temperature (Specific heat cap = $4.184 \text{ J/g}^{\circ}\text{C.}$) .9 °C .9 °C .9 °C .9 °C	neat is at would of the pacity of	55. A 56. at 95. g of v the fin mixtu capac J/g°C water A) 5 B) – C) 1 D) 2	3-g sample of aluminum 0° C is dropped into 35.0 vater at 40.0°C. What is nal temperature of the re? (specific heat ity of aluminum = 0.89 ; specific heat capacity of = 4.184 J/g°C) 5.6°C 10°C 23°C	56. Two heat amo smal A) ' B) ' C) 1 D)	 Two metals of equal mass with different heat capacities are subjected to the same amount of heat. Which undergoes the smallest change in temperature? A) The metal with the higher heat capacity. B) The metal with the lower heat capacity. C) Both undergo the same change in temperature. D) You need to know the initial temperatures of the metals. 		
N37 - Heating and Cooling Curv	/es						/ 4		
57. As water freezes the energy in the reaction is A) released58. During boiling which statem A) The speed of the molect B) Absorbed C) neither D) does not change58. During boiling which statem A) The speed of the molect B) The speed of the molect C) The distance between the D) The distance between the D) The distance between the			tts is true?59. How much energy is absorbed when 18g ice 0°C is heated to 75°C? A) 11655 J B) 46328 J C) 9778 J D) 6012 J			s ice at C?	 60. What is the energy involved when converting 10 grams of steam at 120 C into ice at -20 C? A) 2618 J B) -2618 J C) 30912 J D) -30912 J 		
N38 - Energy of Reactions							/ 4		
61. $C_2H_5OH (l) + 3O_2 (g) \rightarrow 2CO$ $\Delta H = -1.37 \times 10^3 \text{ kJ}$ When a 15.5-g sample of ethy mass = 46.1 g/mol) is burned, is released?? A) $3.36 \times 10^{-1} \text{ kJ}$ B) $4.61 \times 10^{-1} \text{ kJ}$ C) $4.61 \times 10^2 \text{ kJ}$ D) $2.12 \times 10^4 \text{ kJ}$	62. Breaking always _ making a always _ A) Endo B) Endo C) Exo, D) Exo,	g a bond is , and a bond is o, Exo o, Endo , Endo , Exo	a bond is63. Using the data below, what is ΔH , andthe reaction: $A + 2D \rightarrow 2E$ P_{AM} bond is $Rxn \ I A + 2B \rightarrow 2C \Delta H^{\circ} =$ P_{AM} $Rxn \ I A + 2B \rightarrow 2C \Delta H^{\circ} =$ P_{AM} $P_{AM} = P_{AM} = P_{AM$			64. What is the ΔH°_{rxn} for $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ $\Delta H^{\circ}_{formation}$ Values (kJ/mol) $CH_4 = -74.80 O_2 = 0$ $CO_2 = -393.50 H_2O = -285.83$ A) -604.53 B) 604.53 C) -890.36 D) 890.36			

N39 - Solutions Concepts, N40 - So	olutions Calculations							/ 4	
 65. Determine the concentration of a solution made by dissolving 22.5 g of sodium chloride in 750.0 mL of solution. A) 0.289 M B) 30.0 M C) 0.385 M D) 0.513 M 	 66. One mole of each of the follow is added to water in separate fla L of solution. Which solution h total ion concentration? A) calcium carbonate B) potassium phosphate C) aluminum hydroxide D) silver chloride 	ing compounds asks to make 1.0 as the largest	67. Wh con 0.1: fluc A) B) C) D)	at mass of solute i tained in 417 mL 57 <i>M</i> magnesium oride solution? 4.08 g 65 g 9.8 g 1.05 g	is 68 of a	 68. What volume of 17.8 <i>M</i> H₂SO₄ is required to prepare 12.0 L of 0.156 <i>M</i> sulfuric acid? (Ignore significant figures for this problem.) A) 231 mL B) 2.78 L C) 114 mL D) 105 mL 			
N41 - Kinetics, Rate Expressions, A	verage Rates							/ 4	
69. $2H_2 + O_2 \rightarrow 2H_2O$ 70What is the ratio of the initial rate of appearance of water to the initial rate of disappearance of oxygen?70A) 1:1B) 2:1C) 1:2D) 2:2	 ANH₃ + 7O₂ → 4NO₂ + 6H₂O At a certain instant the initial rate of disappearance of oxygen gas is X. What is the value of the appearance of water at the same instant? A) 1.2 X B) 1.1 X C) 0.86 X D) 0.58 X 	 71. 2O₃(g) → 3O₂(g) 72. The average rate of disappearance of ozone is 7.73 × 10⁻³ atm over an interval of time. What is the rate of appearance of O₂ during this interval? A) 1.16 × 10⁻² atm/s B) 7.73 × 10⁻³ atm/s C) 5.15 × 10⁻³ atm/s D) = 2.21 × 10⁻² 				B ₃ O ₃ ⁻ + 5Br ⁻ + 6H ⁺ → 3Br ₂ + 3H ₂ O At a particular instant in time, the value of - Δ [Br ⁻]/ Δ t is 3.5 × 10 ⁻³ mol/L s. What is the value of Δ [Br ₂]/ Δ t in the same units? A) 2.1 × 10 ⁻³ B) 3.5 × 10 ⁻³ C) 5.8 × 10 ⁻³ D) 1.8 × 10 ⁻³			
N42 - Instantaneous Rates and Rat	te Laws							/ 4	
 73. Which best describes the conditities to the collision model? A) The collision must involve particles, to overcome the arrites are as a big the relative orientation of the context of the context	on(s) needed for a successful formation f a sufficient amount of energy, provided f activation energy. the particles has little or no effect on the the particles has an effect only if the kine mimum value. g particles must be above a certain minim articles must allow for formation of new	For a product according74. Consider the following rate law: Rate = $k[A]^n[B]^m$ How are the exponents n and m determined? A) By using the balanced chemical equation B) By using the subscripts for the chemical formulas C) By using the coefficients of the chemical formulas D) By experimentnum value and the but is the product.74. Consider the following rate law: Rate = $k[A]^n[B]^m$ How are the exponents n and m determined? B) By using the balanced chemical equation B) By using the subscripts for the chemical formulas D) By experiment						'[B] ^m on Il formulas al formulas	
75. The following data were obtained Concentrations are in molecules/ [NO] _o [O ₂] _o 1×10^{18} 1×10^{18} 2×10^{18} 1×10^{18} 3×10^{18} 1×10^{18} 1×10^{18} 2×10^{18} 1×10^{18} 3×10^{18} What is the rate law? A) Rate = k[NO][O ₂]	d for the reaction of NO with O ₂ . cm ³ and rates are in molecules/cm ³ · s. Initial Rate 2.0×10^{16} 8.0×10^{16} 18.0×10^{16} 4.0×10^{16} 6.0×10^{16}	76. Run 1 2 3 4 5 What is th A) 10	$2Fe(CN)6^{3}$ [Fe(C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \frac{1}{2} + 2I^{-} \rightarrow 2Fe(CN)^{3-}]_{0} \qquad [I^{-}]_{0} \\ 0.01 \qquad 0.01 \\ 0.01 \qquad 0.02 \\ 0.02 \qquad 0.02 \\ 0.02 \qquad 0.02 \\ 0.02 \qquad 0.02 \\ 0.02 \qquad 0.02 \\ f k? $	$I_{0}^{4-} + I_{2}$ [Fe($(CN)_6^{4-}]_0$ 0.01 0.01 0.01 0.02 0.02	$[I_2]_0 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02$	Rate (M/s) 1×10^{-5} 2×10^{-5} 8×10^{-5} 8×10^{-5} 8×10^{-5}	
B) Rate = $k[NO][O_2]^2$ C) Rate = $k[NO]^2[O_2]$ D) Rate = $k[NO]^2$		B) 10 C) 10 D) 50	${}^{3}M^{-3} s^{-1} M^{-2} s^{-1} M^{-2} s^{-1} M^{-2} s^{-1}$						

N43 - Le Chatelier's Princi	ple					/ 4				
 77. Which of the following about chemical equilib A) It is microscopical amacroscopically s B) It is microscopical amacroscopically s C) It is microscopical and macroscopical dynamic. D) It is microscopica and macroscopical and macroscopical and macroscopical and macroscopica 	g is true U prium? (ally and static. ally and dynamic. ally static ally ally dynamic ally static.	 Jse the following to answer Qs CaCO₃(s) ← CaO(s) + CO₂(g 78. What would happen to the more CaCO₃ were added⁴ A) More CaO would be B) The [CO₂(g)] would C) The amount of CaCO decrease. D) Nothing would change 	s 78-80: g) e system if produced. decrease. O ₃ would ge	 79. What would happen to the system if the total pressure were increased by adding CO₂(g)? A) Nothing would happen. B) More CO₂(g) would be produced. C) The amount of CaO would increase. D) The amount of CaCO₃ would increase. 	80. What the stands of the sta	 What would happen to the system if the total pressure were increased by adding Ar(g)? A) Nothing would happen. B) More CO₂(g) would be produced. C) The amount of CaO would increase. D) The amount of CaCO₃ would increase. 				
N44 - Equilibrium Constant and Quotient / 4										
 81. For a particular system at a particular temperature there equilibrium constant(s) and there equilibrium position(s). A) are infinite; is one B) is one; are infinite C) is one; is one D) are infinite; are infinite 	 82. A(g) + B have the equilibriu value of A A) increases products a product to B) decreases the produc decreases C) does not of figure into ratio. D) does not of temperature 	$(g) \rightleftharpoons C(g) + D(g)$. You gases A, B, C, and D at im. Upon adding gas A, the K: because by adding A, more are made, increasing the preactant ratio. because A is a reactant o ct to reactant ratio change because A does not pothe product to reactant change as long as the ure is constant.	 83. N₂(g) + O₂ At 2000°C Predict the move to re moles of N NO are pla A) The sy B) The co concer C) The co concer D) The co concer 	$g(g) \rightleftharpoons 2NO(g)$ g, K = 0.01 g, K = 0.01 g, K = 0.01 g, K = 0.01 g, G, K = 0.01 g, G,		84. $F_2(g) \rightleftharpoons 2F(g)$ at a particular temperature, the concentrations at equilibrium are $[F_2] = 1.7 \times 10^{-2}$ mol/L and $[F] = 2.0 \times 10^{-4}$ mol/L. Calculate the value of the equilibrium constant from these data. A) 3.4×10^{-2} B) 1.8 C) 4.2×10^5 D) 2.4×10^{-6}				
N45 - ICE Tables						/ 4				
85. Consider the reaction: $2SO_{2}(g) + O_{2}(g) \rightleftharpoons 2SO_{2}(g) + O_{2}(g) \rightleftharpoons 2SO_{2}(g) + O_{2}(g) \rightleftharpoons 2SO_{2}(g) \Leftrightarrow 2SO_{2}(g) \And 2SO_{2}(g) $	$\frac{D_3(g) \text{ at}}{\text{nitially a}}$ pure SO ₃ (g) at er which If y is the t equilibrium, $\frac{(2-y)^2}{(2y)^2(y)}$ $\frac{(2-2y)^2}{(2y)^2(y)}$	86. $2N_2O(g) + N_2H_4(g) \rightleftharpoons$ Initially there are 0.10 0.25 moles of N ₂ H ₄ , in container. If there are 0 N ₂ O at equilibrium, ho N ₂ are present at equili A) 1.8×10^{-2} B) 3.6×10^{-2} C) 5.4×10^{-2} D) 1.1×10^{-1}	3N ₂ (g) + 2H ₂ O(g moles of N ₂ O and a 10.0-L 0.064 moles of ow many moles of ibrium?	87. 2NOCl(g) \rightleftharpoons 2NO(g) + Cl ₂ (K = 1.6 x 10 ⁻⁵ . 1.00 mole of NOCl and 0.927 mole of pu are placed in a 1.00-L conta Calculate the equilibrium concentration of NO(g).A) 4.15 × 10 ⁻³ M B) 9.27 × 10 ⁻¹ M C) 1.08 M D) 5.88 × 10 ⁻³ M	(g) pure re Cl ₂ iner.	88. $H_2 + I_2 \rightleftharpoons 2HI \ K = 40.8$ at a high temperature. If an equimolar mixture of reactants gives the concentration of the product to be 0.50 M at equilibrium, determine the initial concentration of hydrogen. A) 3.28×10^{-1} M B) 7.8×10^{-2} M C) 3.9×10^{-2} M D) 1.3×10^{1} M				

N46 - Acids and Bases and pH (Calculations											/ 4
89. Calculate the $[OH^-]$ in a solution that has a pH of 3.65. A) $4.5 \times 10^{-11} M$ 90. A solution has $[H^+] =$ $4.9 \times 10^{-3} M$. The $[OH^-]$ in this solution is A) $4.5 \times 10^{-11} M$ B) $1.0 \times 10^{-7} M$ A) $4.9 \times 10^{-13} M$. The $[OH^-]$ in this solution is A) $4.9 \times 10^{11} M$ C) $2.2 \times 10^{-4} M$ B) $4.9 \times 10^{-17} M$ D) $2.7 \times 10^{-15} M$ C) $2.0 \times 10^{-12} M$ D) $1.0 \times 10^{-14} M$					91. Calculate the [H ⁺] in a 0.086 M solution of HCN, $K_a = 6.2 \times 10^{-10}$. A) 1.0×10^{-7} M B) 7.3×10^{-6} M C) 5.3×10^{-11} M D) 1.5×10^{-5} M			 92. Which of the species below, when dissolved in H₂O, will not produce a basic solution? A) SO₂ B) NH₃ C) BaO D) Ba(OH)₂ 				
N48 - Weak Acids and Bases												/ 4
93. Identify the Bronsted acids an the following equation (A = E acid, B = Bronsted base): HSO ₃ ⁻ + CN ⁻ \rightarrow HCN A) B A B B) B B A C) A B A D) A B B	d bases in Bronsted + SO ₃ ²⁻ A A B A	94. For 1.0 pH of 1 A) B) C) D)	weak acid, HX, $K_a =$ × 10 ⁻⁶ . Calculate the of a 0.79 M solution95. Saccharin is a monoprotic acid. If the pH of a 1.50 x 10^{-2} M solution of this acid is 5.53, what is the K_a of saccharin?0.10 3.05 6.10 10.9595. Saccharin is a monoprotic acid. If the pH of a 1.50 x 10^{-2} M solution of this acid is 5.53, what is the K_a of saccharin? A) 2.0×10^{-4} B) 1.5×10^{-2} C) 5.8×10^{-10} D) 2.0×10^{-6}			hoprotic a 1.50 x this is the K_a	 96. The pain killer morphine is a weak base when added to water. The reaction produces one mole of hydroxide ions for every one mole of morphine that dissolves. The K_b is 1.6 x 10⁻⁶. What is the pH of a 3.56 x 10⁻³ M solution of morphine? A) 4.12 B) 9.88 C) 5.76 D) 10.03 					when ne mole morphine t is the pH ?
N49 - Salts												/ 4
97. Which of the following correct HF NH ₃ $K_a = 3.5 \times 10^{-4}$ $K_b = 1.8 \times 10^{-7}$ A) NaCN = acidic, NH ₄ F = t B) NaCN = acidic, NH ₄ F = t C) NaCN = basic, NH ₄ F = basic D) NaCN = basic, NH ₄ F = ac	 98. True or false: The species Cl⁻ is not a good base in aqueous solution. A) True. This is because Cl⁻ is the conjugate base of a weak acid. B) False. The species Cl⁻ is a good base in aqueous solution because it is the conjugate base of a strong acid. C) True. This is because Cl⁻ is a good proton donor. D) True. This is because water has a stronger attraction for protons than does Cl⁻. 				99. Determine the pH of 0.03 M solution of NaOC1 $(K_{a HOC1} = 3.00 \times 10^{-8})$ A) 4.00 B) 6.25 C) 10.0 D) 4.69100. Calculate the pI of a 0.05 M solution NH4C1 $K_{b NH3} = 1.8 \times 1$ A) 5.28 B) 8.72 C) 7.0 D) 3.44				e the pH 5 M NH4Cl 1.8 x 10 ⁻⁵			
				A	NSWER KEY	I		I	I			
1. B $S^3H \cdot 6I$ $G \cdot 0c$ 2. D $S^3H \cdot 6I$ $G \cdot 0c$ 3. B $G \cdot 2I$ $G \cdot 8I$ 4. C $O \cdot 9I$ $S \cdot 2I$ 5. A $G \cdot 5I$ $S \cdot 2I$ 6. A $O \cdot 7I$ $O \cdot 2I$ 7. B $O \cdot 2I$ $V \cdot 4I$ 8. D $O \cdot 7I$ $O \cdot 8I$ 9. $\downarrow \cdot ^{2}dZ$ $\downarrow = H$ $h - N - I$ $I - N - I$ $h \cdot 10$ $\uparrow \downarrow \cdot sZ$ $I - N - I$ $f - 10$ $I + SI$ $I - 2I$ $I - 10$ $I - SI$ $I - 2I$	е 7 7 7 7 7 7 7 7 7 7 7 7 7	(<i>p</i> a) ↔) + 2NaNG (<i>p</i> a) ↔	$H_2(g)$	(0,0) HOrder (A, A, A	40. B 33. A $Cn^{2+}(ad) + 2H_2O(l)$ 34. B $Cn^{2+}(ad) + 2N_2$ $Cn^{2+}(ad) + 2N_2$ 35. $2KI(ad) + CI_2(g)$ 35. $2KI(ad) + CI_2(g)$ 37. A 34. B 37. A 34. B 37. A 34. B 37. A 34. B 34. B 34. B 34. B 34. B 34. B 34. B 34. C 34.	10. ∀ 9. C 9. C 9. C 7. C 7. C 7. C 7. C 1. V 1. V 1. V	 20° D 20° D 20° V 28° D 28° D 28° V 28° V 28° V 28° V 47° D 23° D 47° D 23° C 47° D <	20° C 9° B 9° B 9° β 9° β 9° β 9° C 9° C 9° C 9° C 9° C 9° C 9° C 9° C	0. V 9. D 8. D 9. C 2. C 2. C 3. D 1. V 1. V	08 2 54 N 54 N 54 N 54 N 54 N 54 N 54 N 54 N) -06 ∛ -68 ∛ -28 38 -28 -28 -28 -28 -28 -28 -28 -2	100° ∀ 60° C 60° D 60° B 60° B 60° B 60° C 60° C