Chapter #1

Seat#:

Fill out once school starts

Name: Period:

Directions: Show work for ANY mathematical calculations, and show annotations/explanations for any non-mathematical questions.

- 1) Sodium is mixed with water and a violent reaction between the metal and water is seen. This is best classified as:
 - a. An observation
 - b. A law
 - c. A hypothesis
 - d. A theory
- 2) This image represents a particulate view of a sample of matter. Classify the sample according to its composition.
 - a. The sample is a pure element.
 - b. The sample is a homogeneous mixture.
 - c. The sample is a compound.
 - d. The sample is a heterogeneous mixture.
- 3) Which change is a physical change?
 - a. wood burning
 - b. iron rusting
 - c. dynamite exploding
 - d. gasoline evaporating
- 4) Which property of rubbing alcohol is a chemical property?
 - a. density (0.786 g/cm³)
 - b. flammability
 - c. boiling point (82.5 °C)
 - d. melting point (-89 °C)
- 5) Convert 85.0 °C to K.
 - a. 181.1 K
 - b. 358 K
 - c. 29.4 K
 - d. 302.6 K
- **6)** Express the quantity 33.2×10^{-4} m in mm.
 - a. 33.2 mm
 - b. 3.32 mm
 - c. 0.332 mm
 - d. 3.32×10^{-6} mm
- 7) A 1.75 L sample has a density of 0.921 g/mL. Find the mass.
 - a. 1.61×10^3 g
 - b. 1.61×10^{-3} g
 - c. 1.90×10^3 g
 - d. 1.90×10^{-3} g
- **8)** Perform the calculation to the correct number of significant figures. (43.998 × 0.00552)/2.002
 - a. 0.121
 - b. 0.12
 - c. 0.12131
 - d. 0.1213
- **9)** Calculate with the correct number of significant figures. (8.01 7.50)/3.002
 - a. 0.1698867
 - b. 0.17
 - c. 0.170
 - d. 0.1700

- **10)** Convert 1285 cm² to m²
 - a. 1.285 x 10⁷ m²
 - b. 12.85 m²
 - c. 0.1285 m²
 - d. 1.285 x 10⁵ m²
- **11)** The first diagram depicts a compound in its liquid state. Which of the other diagrams best depicts the compound after it has evaporated into a gas?

- **12)** Three samples, each of a different substance, are weighed and their volume is measured. The results are tabulated. List the substances in order of decreasing density.
 - a. ||| > || > |

C.

- b. I > II > III
- c. |I| > I > I|
- d. || > | > ||

	Mass	Volume
Substance I	10.0 g	10.0 mL
Substance II	10.0 kg	12.0 L
Substance III	12.0 mg	10.0 μL

- **13)** A solid metal sphere has a radius of 3.53 cm and a mass of 1.796 kg. What is the density of the metal in g/cm³? (The volume of a sphere is $V = \frac{4}{3}\pi r^3$)
 - a. 34.4 g/cm³
 - b. 0.103 g/cm³
 - c. 121 g/cm³
 - d. 9.75 g/cm³
- **14)** The gas mileage of a certain German automobile is 22 km/L. Convert this quantity to miles per gallon.
 - a. 9.4 mi/gal
 - b. $1.3 \times 10^2 \text{ mi/gal}$
 - c. 52 mi/gal
 - d. 3.6 mi/gal
- **15)** A wooden block has a volume of 18.5 in³. Express the volume of the cube in cm³.
 - a. 303 cm³
 - b. 47.0 cm³
 - c. 1.13 cm³
 - d. 7.28 cm³

15) C 13) D 16) ∀ 12) ∀	9) B 9) B 10) C 10) C	2) B 3) D 5) C
∀(11	a (9	A (1
	rs	<u>əwsnA</u>

- Two samples of a compound containing elements A and B are decomposed. The first sample produces 15 g of A and 35 g of B. The second sample produces 25 g of A and what mass of B?
 - a. 11 g
 - 58 g b.
 - 21 g C.
 - d. 45 g
- 2) A compound containing only carbon and hydrogen has a carbon-to-hydrogen mass ratio of 11.89. Which carbon-tohydrogen mass ratio is possible for another compound composed only of carbon and hydrogen?
 - a. a. 2.50
 - b. 3.97 b.
 - c. 4.66
 - d. 7.89
- 3) Which idea came out of Rutherford's gold foil experiment?
 - a. Atoms contain protons and neutrons.
 - b. Matter is composed of atoms.
 - Elements have isotopes.
 - d. Atoms are mostly empty space.
- 4) JJ Thomson's Cathode Ray experiment determined the charge on an electron as being negative. How did his experiment determine this?
 - a. The beam of electrons bent towards the positive side of a magnet and away from the negative end
 - The beam of electrons bent away from the positive side of a magnet and towards the negative side
- Determine the number of protons and neutrons in the isotope Fe-58.
 - a. 26 protons and 58 neutrons
 - b. 32 protons and 26 neutrons
 - 26 protons and 32 neutrons
 - d. 58 protons and 58 neutrons
- An isotope of an element contains 82 protons and 122 neutrons. What is the symbol for the isotope?
 - $^{204}_{82}Pb$
 - $^{122}_{82}Pb$ b.
 - c.
- Determine the number of electrons in the Cr3+ ion.
 - 24 electrons
 - 27 electrons h
 - 3 electrons C
 - 21 electrons
- Which pair of elements do you expect to be most similar in their chemical properties?
 - a. K and Fe
 - O and Si b.
 - Ne and N C.
 - Br and I d.
- Which element is not a main-group element?
 - Se a.
 - Mο h
 - Sr c.
 - d. Ba

Chapter #2

- 10) What is the charge of the ion most commonly formed by S?

 - b.
 - c.
 - Ы
- 11) A naturally occurring sample of an element contains only two isotopes. The first isotope has a mass of 68.9255 amu and a natural abundance of 60.11%. The second isotope has a mass of 70.9247 amu. Find the atomic mass of the element.
 - a. 70.12 amu
 - h. 69.72 amu
 - C. 84.06 amu
 - 69.93 amu
- 12) Which sample contains the greatest number of atoms?
 - a. 14 g C
 - b. 49 g Cr
 - c. 102 g Ag
 - d. 202 g Pb
- **13)** Determine the number of atoms in 1.85 mL of mercury. (The density of mercury is 13.5 g/mL.)
 - a. 3.02×10^{27} atoms
 - b. 4.11×10^{20} atoms
 - c. 7.50×10^{22} atoms
 - d. 1.50×10^{25} atoms
- **14)** A 20.0 g sample of an element contains 4.95×10^{23} atoms. Identify the element.
 - a. Cr
 - b. 0
 - c. Mg
 - d. Fe
- **15)** Copper has two naturally occurring isotopes with masses 62.94 amu and 64.93 amu and has an atomic mass of 63.55 amu. Which mass spectrum is most likely to correspond to a naturally occurring sample of copper?

b.

۱۵) ∀	a (01	2) C
14) C	a (6	∀ (⊅
13) C	₫ (8	3) D
۱2) ∀	a (2	S) B
8(II	∀ (9	a (1
	S1	<u>əwsnA</u>

- 1) What is the empirical formula of a compound with the molecular formula C₁₀H₈?
 - a. C₅H₃
 - b. C₂H₄
 - c. C₅H₄
 - d. CH
- 2) Which substance is an ionic compound?
 - a. Srl₂
 - b. N_2O_4
 - c. He
 - d. CCI₄
- 3) What is the correct formula for the compound formed between calcium and sulfur?
 - a. CaS
 - b. Ca₂S
 - c. CaS₂
 - d. CaS₃
- 4) Name the compound Srl₂.
 - a. strontium iodide
 - b. strontium diiodide
 - c. strontium(II) iodide
 - d. strontium(II) diiodide
- **5)** What is the formula for manganese(IV) oxide?
 - a. Mn₄O
 - b. MnO₄
 - c. Mn₂O
 - d. MnO₂
- 6) Name the compound Pb(C₂H₃O₂)₂
 - a. lead(II) carbonate
 - b. lead(II) acetate
 - c. lead bicarbonate
 - d. lead diacetate
- 7) Name the compound P₂I₄.
 - a. phosphorus iodide
 - b. phosphorus diiodide
 - c. phosphorus(II) iodide
 - d. diphosphorus tetraiodide
- 8) Name the compound HNO₂ (aq).
 - a. hydrogen nitrogen dioxide
 - b. hydrogen nitrate
 - c. nitric acid
 - d. nitrous acid
- **9)** Determine the number of CH₂Cl₂ molecules in 25.0 g CH₂Cl₂.
 - a. 0.294 molecules
 - b. 1.77×10^{23} molecules
 - c. 1.28×10^{27} molecules
 - d. 1.51×10^{25} molecules
- **10)** List the elements in the compound CF₂Cl₂ in order of decreasing mass percent composition.
 - a. C > F > CI
 - b. F > CI > C
 - c. CI > C > F
 - d. Cl > F > C

Chapter #3

- 11) Determine the mass of potassium in 35.5 g of KBr.
 - a. 17.4 g
 - b. 0.298 g
 - c. 11.7 g
 - d. 32.9 g
- **12)** A compound is 52.14% C, 13.13% H, and 34.73% O by mass. What is the empirical formula of the compound?
 - a. C₂H₈O₃
 - b. C₂H₆O
 - c. C₄HO₃
 - d. C₃HO₆
- **13)** A compound has the empirical formula CH₂O and a formula mass of 120.10 amu. What is the molecular formula?
 - a. CH₂O
 - b. $C_2H_4O_2$
 - c. C₃H₆O₃
 - d. C₄H₈O₄
- **14)** Combustion of 30.42 g of a compound containing only carbon, hydrogen, and oxygen produces 35.21 g CO₂ and 14.42 g H₂O. What is the empirical formula? (takes a lot of space so don't forget to notice Q#15 at the very bottom!)
 - a. C₄H₈O₆
 - b. C₂H₄O₃
 - c. C₂H₂O₃
 - d. C₆HO₁₂

15) What are the correct coefficients (reading from left to right) when the chemical equation is balanced?

 $_$ PCl₃(I) + $_$ H₂O(I) \rightarrow $_$ H₃PO₃ (aq) + $_$ HCl(aq)

- a. 1, 3, 1, 3
- b. 1, 2, 1, 1
- c. 1, 3, 2, 1
- d. 3, 6, 1, 9

∀ (G1	a (or	a (s
14) B	a (6	∀ (⊅
13) 🛭	₫ (8	Α (ε
12)B	a (z	∀ (Z
11)C	a (a	J) C
	rs	<u>əwsnA</u>

1) $3 \text{ MnO}_2 + 4 \text{ Al} \rightarrow 3 \text{ Mn} + 2 \text{ Al}_2\text{O}_3$

What mass of Al is needed to fully react with 25.0 g MnO₂?

- a. 7.76 g Al
- b. 5.82 g Al
- c. 33.3 g Al
- d. 10.3 g Al
- 2) $2Na(s) + Cl_2(g) \rightarrow 2 NaCl(s)$

What is the theoretical yield of sodium chloride for the reaction of 55.0 g Na with 67.2 g Cl_2 ?

- a. 1.40×10^2 g
- b. 111 g
- c. 55.4 g
- d. 222 g
- 3) Sulfur and fluorine react to form sulfur hexafluoride:

$$S(s) + 3 F_2(g) \rightarrow SF_6(g)$$

If 50.0 g S is allowed to react as completely as possible with 105.0 g F_2 , what mass of the excess reactant is left?

- a. 20.5 g S
- b. 45.7 g F₂
- c. 15.0 g S
- d. $36.3 g F_2$
- **4)** A reaction has a theoretical yield of 45.8 g. When the reaction is carried out, 37.2 g of the product is obtained. What is the percent yield?
 - a. 55.1%
 - b. 44.8%
 - c. 123%
 - d. 81.2%
- **5)** What is the molarity of a solution containing 55.8 g of MgCl₂ dissolved in 1.00 L of solution?
 - a. 55.8 M
 - b. 1.71 M
 - c. 0.586 M
 - d. 0.558 M
- **6)** What mass (in grams) of Mg(NO₃)₂ is present in 145 mL of a 0.150 M solution of Mg(NO₃)₂?
 - a. a. 3.23 g
 - b. b. 0.022 g
 - c. c. 1.88 g
 - d. d. 143 g
- **7)** What volume of a 1.50 M HCl solution should you use to prepare 2.00 L of a 0.100 M HCl solution?
 - a. 0.300 L
 - b. 0.133 L
 - c. 30.0 L
 - d. 2.00 L

Chapter #4

- 8) 2 KI(aq) + Pb(NO₃)₂ (aq) → 2 KNO₃(aq) + PbI₂(s) What minimum volume of 0.200 M potassium iodide solution is required to completely precipitate all of the lead in 155.0 mL of a 0.112 M lead(II) nitrate solution?
 - a. 348 mL
 - b. 86.8 mL
 - c. 174 mL
 - d. 43.4 MI
- **9)** Which solution forms a precipitate when mixed with a solution of aqueous Na₂CO₃?
 - a. KNO₃(aq)
 - b. NaBr(aq)
 - c. NH₄Cl(aq)
 - d. CuCl₂ (aq)
- **10)** What is the net ionic equation for the reaction that occurs when aqueous solutions of KOH and SrCl₂ are mixed?
 - a. K^+ (aq) + CI^- (aq) \rightarrow KCI(s)
 - b. Sr^{2+} (aq) + 2 OH⁻ (aq) \rightarrow Sr(OH)₂ (s)
 - c. H^+ (aq) + OH^- (aq) $\to H_2O$ (I)
 - d. None of the above because no reaction occurs
- **11)** What is the net ionic equation for the reaction that occurs when aqueous solutions of KOH and HNO₃ are mixed?
 - a. K^+ (aq) + NO^- (aq) \rightarrow KNO_3 (s)
 - b. $NO^{-}(aq) + OH^{-}(aq) \rightarrow NO_3OH$ (s)
 - c. H^+ (aq) + OH^- (aq) $\rightarrow H_2O$ (I)
 - d. None of the above because no reaction occurs.
- **12)** What is the net ionic equation for the reaction that occurs when aqueous solutions of KHCO₃ and HBr are mixed?
 - a. K^+ (aq) + $C_2H_3O_2^-$ (aq) $\rightarrow KC_2H_3O_2$ (s)
 - b. H^+ (aq) + HCO_3^- (aq) $\rightarrow CO_2$ (g) + H_2O (l)
 - c. H^+ (aq) + OH^- (aq) $\rightarrow H_2O$ (I)
 - d. None of the above because no reaction occurs.
- 13) What is the oxidation state of carbon in CO₃²⁻?
 - a. +4
 - b. +3
 - c. -3
 - d. -2
- **14)** 2Na (s) + 2H₂O (l) → 2NaOH (aq) + H₂ (g) Identify the oxidizing agent.
 - a. Na (s)
 - b. H₂O (I)
 - c. NaOH (aq)
 - d. H₂ (aq)
- 15) Identify the correct balanced equation for the combustion of propane C_3H_8
 - a. $C_3H_8(g) \rightarrow 4 H_2(g) + 3 C(s)$
 - b. $C_3H_8(g) + 5 O_2(g) \rightarrow 4 H_2O(g) + 3 CO_2(g)$
 - c. $C_3H_8(g) + 3 O_2(g) \rightarrow 4 H_2O(g) + 3 CO_2(g)$
 - d. $2 C_3H_8 (g) + 9 O_2 (g) \rightarrow 6 H_2CO_3 (g) + 2 H_2 (g)$

	1 2) B	a (01	2) C
	1 4) B	□ (6	d (7
Ì	۱ع) ∀	O (8	Α (ε
Ì	1 3) B	8 (7	8 (2
İ) (II	∀ (9	a(r
1		SI	<u>əwsnA</u>