<u>#4 - SELF-ASSESS:</u> Practice Quiz to See What You Remember

Directions

- 1. Print this document. See Summer Assignment Cover Sheet for a tip on printing double sided if your printer doesn't do it automatically!
- 2. Using ONLY a periodic table and a non-graphing scientific calculator, complete the following questions. Do NOT peek at the internet, your Honors Chem notes, etc. See what you *actually* remember from Honors Chem!
- 3. USE BINDER PAPER FOR ALL MATH PROBLEMS! STAPLE TO THE BACK OF THIS DOCUMENT!
- 4. Once you have completed the questions, use the answer key at the end to check your work. Use a **<u>GREEN PEN</u>** to show your corrections.
- 5. For each topic, WRITE DOWN how many you got correct in the box for that topic.
- 6. Use the <u>"REVIEW TASK CHECKLIST</u>" to determine what review work needs to be completed for each of the topics. The class website will have what you need to do the tasks. <u>www.mychemistryclass.net</u>
- 7. Use the "Evidence of Self Study" paper to show proof that you did the tasks. Show me EVERYTHING you did to review and get caught up!
- 8. <u>BE HONEST</u>...don't say you did better than you actually did to get out of doing the review work. You should WANT to do anything and everything possible to enter AP Chemistry on a strong foot. Cutting corners now will only cause you to struggle later! Make a grownup decision to set yourself up for success. Show me you can do that.

	Review Task Checklist	
# Correct	Review Tasks to Accomplish	Some Useful Links to Help with Review Tasks
4 out of 4	 Skim through the corresponding lecture PDF Jot down a few reminders about the topic 	General class website: <u>www.mychemistryclass.net</u>
3 out of 4	 Skim through the corresponding lecture PDF Jot down a few reminders about the topic Find and do 3 practice problems (from Honors Chem Worksheets, the internet, textbook, etc) 	 Honors tab on class website: <u>http://mychemistryclass.net/honorschem.html</u> PDFs of Lectures: http://mychemistryclass.net/LICtablesfeantents.html
2 out of 4	 Watch the corresponding YouTube lecture video(s) Jot down some notes from the video Do 3 practice problems (from Honors Chem Worksheets, the internet, textbook, etc) 	 <u>http://mychemistryclass.net/HCtableofcontents.html</u> YouTube Links: at the end of the Lecture PDFs or on YouTube Channel directly if that is easier: <u>https://tinyurl.com/yc23pjmb</u>
1 out of 4	 Watch the corresponding YouTube lecture video(s) Jot down some notes Do 5 practice problems (from Honors Chem Worksheets, the internet, textbook, etc) 	 Packets of Worksheet problems from Honors Chemistry: <u>http://mychemistryclass.net/HColdrainbowpackets.html</u> OpenStax Textbook:
0 out of 4	 Watch the corresponding YouTube lecture video(s) Jot down some notes Search the free "OpenStax" or "CK-12" textbooks for the topic and spend some time reading up about it. Jot down some notes while reading Do 5 practice problems (from Honors Chem Worksheets, the internet, textbook, etc) 	CK-12 Textbook: https://tinyurl.com/5a8krxc4 CK-12 Textbook: https://tinyurl.com/5a8krxc4

Turned in Monday of the 2nd Week of School!

Seat #:

Topic Lecture Note Titles, Questions, and Score Use binder paper to show your work for <u>ALL</u> math problems!									
N3 – Significant Figures						/ 4			
 Using the rules of significant figures, calculate the following 6.167 + 70 = A) 76 B) 80 C) 76.167 D) 77 		B) 14.9C) 14.81		hany significant figures in the result of the calcu $(2.8) \times (6.9234 \times 10^5)$		The result of the calculation has how many significant figures? (0.4333 J/g °C) (33.12°C – 31.12°C)(412.1 g) A) 1 B) 2 C) 3 D) 4			
N5 – Atomic Numbers and Isot	topes					/ 4			
 5. How many electrons are present in a fluorine, F, atom? A) 9 B) 10 C) 11 D) 18 	a h A B C	and neutrons, does 27 Al $^{3+}$ with have?			 Kr, 55 neutrons Se, 55 neutrons 				
N10 - Introduction to Electrons	s, N12 - Writing e- Configs, N13	- Config	s of lons &	Noble Gas Configs		/ 4			
9. State the maximum number of electrons allowed in each. a. 4 th principal energy level b. any d sublevel c. a 2p orbital10. The configuration for A) $1s^22s^22p^63s^23p^2$ B) $1s^22s^22p^63s^5$ C) $1s^22s^22p^63s^5$ D) $1s^22s^22p^63s^23p^5$		2	is	11. Draw the orbita ground stat	al diagram for the of oxygen.	he 12. The electron configuration of Cr^{3+} is A) [Ar]4s ² 3d ¹ B) [Ar]4s ¹ 3d ² C) [Ar]3d ³ D) [Ar]4s ² 3d ⁴			
N15 - Periodic Trends						/ 4			
 exhibits the correct A orders for both atomic radius and ionization energy, respectively? (smallest to largest) A) S, O, F, and F, O, S B) F, S, O, and O, S, F C) S, F, O, and S, F, O D) F, O, S, and S, O, F 	 4. Which is false? A) Elements in the same column have similar reactivities since their valence e-'s tend to be located in same types of orbitals. B) Isoelectronic ions must have the same electron configuration. C) Atomic radius increases going act a period from left to right becaus the number of e-'s increases, so the are located further from the nucleo. D) It takes more energy to remove a electron from Li than from Cs because the valence e-'s in Li are located closer to the nucleus. 	the cross e hey eus. n	$\begin{array}{c} \text{smal} \\ \text{As}^{3-}, \\ \text{A)} \text{As}^{3-}, \\ \text{B)} \text{Sr}^{2+} < \\ \text{C)} \text{As}^{3-}, \end{array}$	r the following ions from lest to largest atomic Se^{2-} , Sr^{2+} , Rb^+ , Br^- $< Se^{2-} < Br^- < Rb^+ < Sr^-$ $< Rb^+ < As^{3-} < Se^{2-} < E^+$ $< Se^{2-} < Br^- < Sr^{2+} < R^+$ $< Rb^+ < Br^- < Se^{2-} < As^{3-}$	size. A) r^{2+} B) $3r^-$ B) b^+ C) s^{3-}	 5. Which is true? The Kr 1s orbital is smaller than the He 1s orbital because Kr's p and d orbitals crowd the s orbitals. The Kr 1s orbital is larger than the He 1s orbital because Kr has more e-'s. The Kr 1s orbital is smaller than the He 1s orbital because Kr's nuclear charge draws the electrons closer. The Kr 1s orbital and He 1s orbital are the same size because both s orbitals can only have two electrons. 			

N16 - Bonding and Naming, N17	7 - Writing Neutra	al Compounds					/ 4
 17. The correct formula for ammodel A) NH₄SO₃ B) NH₄SO₄ C) (NH₄)₂SO₃ D) (NH₄)₂SO₄ 	18. The correct name for FeO is1A) iron oxide1B) iron(II) oxide1C) iron(I) oxide1D) iron monoxide1		19. Give the formula for mercury(II) sulfide.		20.	 The correct name for P₂O₅ is A) phosphorus(II) oxide B) phosphorus(V) oxide C) diphosphorus oxide D) diphosphorus pentoxide 	
N18 - Lewis Structures, N19 – V	SEPR						/ 4
 21. Which of the following has a double bond? A) H₂O B) C₂H₂ C) C₂H₄ D) CN⁻ 	vis Structure for NH4 ⁺ 23. CBr ₂ H ₂ BH ₃ X Which has a see-saw sh A) CBr ₂ H ₂ B) BH ₃ C) XeCl ₄ D) SF ₄			KeCl ₄ SF ₄ nape?	$\begin{array}{ccc} BH_3 & XeCl_4 & SF_4 \\ s \text{ bond angles of } 109.5^{\circ} \\ r_2H_2 \\ s \\ Cl_4 \end{array}$		
N20 – Polarity, N21 – IMFs							/ 4
25. How many are nonpolar? CO NH ₃ CO ₂ CH A) 1 B) 2 C) 3 D) 4	4 H ₂ A H C	 Order from weakest to s A) dipole-dipole, Lond and hydrogen-bond B) London Dispersion, hydrogen-bonding, C) hydrogen-bonding, Dispersion, and ion D) dipole-dipole, ionic and hydrogen-bond 	lon Dispersion, ionio ing , dipole-dipole, ionic dipole-dipole, Lond ic , London Dispersior	on	 7. Which of the follow substances would y have the lowest box A) diamond B) methane, CH₄ C) sodium nitrate, D) glycerine, C₃H 	you expect to iling point? , NaNO ₃	 28. Which would you expect to have the highest boiling point? A) F₂ B) Cl₂ C) Br₂ D) I₂
N22 - Balancing Equations, N23	- Types of React	ions					/ 4
 29. All of the following are clues that a chemical rxn has taken place except A) A color change occurs. B) A solid forms. C) The reactant is smaller. D) Bubbles form. 	stance in bold type? coefficients.			hine the sum of the $(g) \rightarrow \operatorname{Fe}_2\operatorname{O}_3(s)$	produce aqu	metal reacts with water to leous sodium hydroxide and as. Write the balanced equation ction.	
N24 - Predicting Products (and	net ionic)						/ 4
33. Write the balanced molecular ec between aqueous solutions of lithius hydroxide.		bdium sul A) B)	fate when they are n $\begin{array}{c} Ca^{2+} \\ Cl^{-} \end{array}$ + $\begin{array}{c} \kappa^{+} \\ SO_{4}^{2-} \end{array}$ -	$\Rightarrow \begin{bmatrix} so_4^{2-Cl^{-}} \\ \kappa^{+} \end{bmatrix}$	bichiometric amounts Ci^{K^*} Ca^{2*} $D)$		

35. Predict the products and balance KI + Cl ₂ →	-	36.Write the molecular equation, the complete ionic equation, and the net ionic equation for the following reaction: Aqueous solutions of copper(II) nitrate and sodium hydroxide are mixed to form solid copper(II) hydroxide and aqueous sodium nitrate.					
N25 - Molar Mass and Molar Co	nversions, N26 - Mole Ratio a	nd Stoichiometr	y		/ 4		
 37. Which represents the greatest number of atoms? A) 50.0 g Al B) 50.0 g Cu C) 50.0 g Zn D) 50.0 g Fe 	39. $Cu(s) + 2AgNO_3(aq) \rightarrow 2Ag(s) + Cu(NO_3)_2(aq)$ what number of grams of silver can be produced from the reaction of 33.9 g of copper? A) 115 g Ag B) 57.6 g Ag C) 28.8 g Ag D) 39.9 g Ag			 40. If 22.5 g of CO₂ is produced in the reaction of C₂H₂ with O₂ to form CO₂ and H₂O, how many grams of H₂O are produced? A) 9.21 g B) 4.61 g C) 18.4 g D) 3.07 g 			
N27 - Limiting Reagent Stoichio	netry	· · · · · · · · · · · · · · · · · · ·			/ 4		
41. $2Na(s) + 2H_2O(l) \rightarrow$ $2NaOH(aq) + H_2(g)$ What number of moles of H ₂ will be produced when 4.0 mol Na is added to 1.4 mol H ₂ O? A) 0.7 mol B) 2.8 mol C) 2.0 mol D) 1.4 mol	41. $2Na(s) + 2H_2O(1) \rightarrow$ $2NaOH(aq) + H_2(g)$ What number of moles of H ₂ will be produced when 4.0 mol Na is added to 1.4 mol H ₂ O? A) 0.7 mol B) 2.8 mol C) 2.0 mol A1. $2Na(s) + 2H_2O(1) \rightarrow$ $42. 2A + B \rightarrow C. In which can limiting reactant? 42. 0 + B \rightarrow C. In which can limiting reactant? 42. 0 + B \rightarrow C. In which can limiting reactant? 42. 0 + B \rightarrow C. In which can 6 \oplus 9 \oplus $			would produce the greatest amount of product, assuming all went to completion $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$			
N31 - Basic Gas Laws, N32 - Idea	ll Gas Law, N33 - Dalton's Law	of Partial Press	ures		/ 4		
 45. Consider a gas at 1.00 atm in a 5.00-L container at 20.°C. What pressure does the gas exert when transferred to a volume of 2.30 L at 43°C? A) 4.67 atm B) 2.02 atm C) 0.371 atm D) 2.34 atm 	a 5.00-L container at 20.°C.exerted by 2.05 mol ofWhat pressure does the gasgas in a 2.92-Lexert when transferred to acontainer at 32°C.A) 4.67 atmB) 51.3 atmB) 2.02 atmC) 17.6 atmC) 0.371 atmD) 5.38 atm			 48. Which of the following is <i>not</i> a postulate of the kine molecular theory? A) Gas particles have most of their mass concentrat the nucleus of the atom. B) The moving particles undergo perfectly elastic collisions with the walls of the container. C) The forces of attraction and repulsion between t particles are insignificant. D) The average kinetic energy of the particles is din proportional to the absolute temperature. 			

N34 - Gas Stoichiometry					/ 4		
49. $C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2(g) + 2H_2O($ What volume of oxygen gas at STP ineeded to react with 3.94 mol of C_2H_4 ? (Ignore significant figures for this problem.) A) 11.8 L B) 29.4 L C) 265 L D) 88.3 L		mL of ahydrogen gas in a container fitted with aSuppose 143.0 g of hydrogena: STP hasmassless, frictionless piston. If the originalso of 1.36as of 1.36volume of the container is 10.3 L, what is thevolume after the reaction has run tocompletion? Assume constant temperature.1.00 atm and 25°C. Determ22 g/mol $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$ A) 11.90 L1.2 g/molB) 1.38 LC) 51.4 L					
N35 - Specific Heat, N36 – Calorimet	ry				/ 4		
 53. A 5.10-g sample of iron is heated from 36.0°C to 75.0°C. The amount of energy required is 89.51 J. The specific heat capacity of this sample of iron is A) 1.78 × 10⁴ J/g °C B) 2.22 J/g °C C) 0.234 J/g °C D) 0.450 J/g °C 	 54. Assume that 248.3 J of added to 5.00 g of wate originally at 23.0°C. We be the final temperature water? (Specific heat ca water = 4.184 J/g°C.) A) 11.9 °C B) 49.9 °C C) 62.9 °C D) 34.9 °C 	er hat would e of the	 A 56.3-g sample of aluminum at 95.0°C is dropped into 35.0 g of water at 40.0°C. What is the final temperature of the mixture? (specific heat capacity of aluminum = 0.89 J/g°C; specific heat capacity of water = 4.184 J/g°C) A) 54°C B) -5.6°C C) 110°C D) 23°C 	metals of equal mass with different capacities are subjected to the same int of heat. Which undergoes the lest change in temperature? The metal with the higher heat capacity. The metal with the lower heat capacity. Both undergo the same change in emperature. You need to know the initial emperatures of the metals.			
N37 - Heating and Cooling Curves					/ 4		
energy in the reaction isA)A) releasedB)B) AbsorbedC)	The speed of the molecules The speed of the molecules The speed of the molecules The distance between the mon The distance between the mon	is decreasing is increasing olecules is decreas		g ice at	 60. What is the energy involved when converting 10 grams of steam at 120 C into ice at -20 C? A) 2618 J B) -2618 J C) 30912 J D) -30912 J 		
N38 - Energy of Reactions					/ 4		
 61. C₂H₅OH (l) + 3O₂ (g) → 2CO₂ (g) + ΔH = -1.37 x 10³ kJ When a 15.5-g sample of ethyl alcoh mass = 46.1 g/mol) is burned, how n is released?? A) 3.36 × 10⁻¹ kJ B) 4.61 × 10⁻¹ kJ C) 4.61 × 10² kJ D) 2.12 × 10⁴ kJ 	nol (molar making nuch energy always A) Enc	, and a bond is lo, Exo lo, Endo o, Endo	63. Using the data below, what the reaction: $A + 2D \rightarrow 2E$ $Rxn \ 1 A + 2B \rightarrow 2C A$ $Rxn \ 2 D + C \rightarrow E + B A$ A) 13 kJ B) -11 kJ C) -3 kJ D) 21 kJ	$\Delta H^{\circ} = 5 \text{ kJ}$	64. What is the ΔH°_{rxn} for $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ $\Delta H^{\circ}_{formation}$ Values (kJ/mol) $CH_4 = -74.80 O_2 = 0$ $CO_2 = -393.50 H_2O = -285.83$ A) -604.53 B) 604.53 C) -890.36 D) 890.36		

N39 - Solutions Concepts, N40 - So	lutions Calculations							/ 4
 65. Determine the concentration of a solution made by dissolving 22.5 g of sodium chloride in 750.0 mL of solution. A) 0.289 M B) 30.0 M C) 0.385 M D) 0.513 M 	ing compounds asks to make 1.0 as the largest	con 0.13 fluc A) B) C)	at mass of tained in 4 57 <i>M</i> magr oride soluti 4.08 g 65 g 9.8 g 1.05 g	17 mL of a nesium	 68. What volume of 17.8 <i>M</i> H₂SO₄ is required to prepare 12.0 L of 0.156 <i>M</i> sulfuric acid? (Ignore significant figures for this problem.) A) 231 mL B) 2.78 L C) 114 mL D) 105 mL 			
N41 - Kinetics, Rate Expressions, Av	verage Rates							/ 4
69. $2H_2 + O_2 \rightarrow 2H_2O$ What is the ratio of the initial rate of appearance of water to the initial rate of disappearance of oxygen? A) 1:1 B) 2:1 C) 1:2 D) 2:2	The average rate of disappearanceAt a partiof ozone is 7.73×10^{-3} atm over an interval of time. What is the rate of appearance of O_2 during this interval?At a parti $-\Delta[Br]/\Delta$ the valueA) 1.16×10^{-2} atm/sB) $3.5 \times$ C) 5.15×10^{-3} atm/sD) $1.8 \times$			At a particular $-\Delta[Br]/\Delta t$ is 3.	10 ⁻³ 10 ⁻³			
N42 - Instantaneous Rates and Rate	D) 0.58 X	D) 2.31		/5				/ 4
 73. Which best describes the condition to the collision model? A) The collision must involve a particles, to overcome the ad B) The relative orientation of th C) The relative orientation of th particles is below some min D) The energy of the incoming relative orientation of the particles of the parti	from the motion of formation of the pr tic energy of the num value and the	the oduct.		w are the expo By using th By using th	owing rate law: in onents <i>n</i> and <i>m</i> do not be balanced cherne subscripts for the coefficients of the coefficients of the	letermined? nical equati the chemica	on al formulas	
75. The following data were obtained	for the reaction of NO with O ₂ .	76. $2Fe(CN)_6^{3-} + 2I^- \rightarrow 2Fe(CN)_6^{4-} + I_2$						
Concentrations are in molecules/c $[NO]_o$ $[O_2]_o$ 1×10^{18} 1×10^{18} 2×10^{18} 1×10^{18} 3×10^{18} 1×10^{18} 1×10^{18} 2×10^{18} 1×10^{18} 2×10^{18} 1×10^{18} 3×10^{18} 1×10^{18} 3×10^{18} What is the rate law? A) Rate = k[NO][O_2] B) Rate = k[NO][O_2]^2 C) Rate = k[NO]^2[O_2] D) Rate = k[NO]^2	A) 10 B) 10 C) 10	0 0 0 0	$[N)_{6}^{3-}]_{0}$.01 .02 .02 .02 .02 .02 .02 .02 .02	$\begin{bmatrix} I^{-}]_{0} \\ 0.01 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \end{bmatrix}$	[Fe(CN) ₆ ⁴⁻] ₀ 0.01 0.01 0.01 0.02 0.02	$[I_2]_0 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02$	Rate (M/s) 1×10^{-5} 2×10^{-5} 8×10^{-5} 8×10^{-5} 8×10^{-5}	

N43 - Le Chatelier's Principle / 4								
 77. Which of the following is tru about chemical equilibrium? A) It is microscopically an macroscopically static. B) It is microscopically dynam C) It is microscopically dynamic. D) It is microscopically dynamic. 	d d CaCO ₃ (s) \rightleftharpoons CaO(s) + CO ₂ more CaCO ₃ were added A) More CaO would b B) The [CO ₂ (g)] would C) The amount of CaC decrease. namic D) Nothing would cha	the system if ed? be produced. d decrease. CO_3 would	 9. What would happen to the system if the total pressure were increased by adding CO₂(g)? A) Nothing would happen. B) More CO₂(g) would be produced. C) The amount of CaO would increase. D) The amount of CaCO₃ would increase. 	 80. What would happen to the system if the total pressure were increased by adding Ar(g)? A) Nothing would happen. B) More CO₂(g) would be produced. C) The amount of CaO would increase. D) The amount of CaCO₃ would increase. 				
N44 - Equilibrium Constant and	Quotient			/ 4				
81. For a particular system at a particular temperature there equilibrium constant(s) and there equilibrium position(s).82.A) position(s) and there equilibrium position(s).A)A) are infinite; is oneB)B) is one; are infiniteB)C) is one; is one D) are infinite; are infiniteC)D)are infinite; are infiniteD)are infinite; are infinite	$A(g) + B(g) \rightleftharpoons C(g) + D(g)$. You have the gases A, B, C, and D at equilibrium. Upon adding gas A, the value of K: increases because by adding A, more products are made, increasing the product to reactant ratio. decreases because A is a reactant o the product to reactant ratio decreases. does not change because A does not figure into the product to reactant ratio. does not change as long as the temperature is constant.	At 2000°C, I Predict the d move to read moles of N ₂ , NO are place A) The syst B) The cond concentr C) The cond concentr D) The cond	B)The concentration of NO will decrease; the concentrations of N2 and O2 will increase.A) 3.4×10^{-2} C)The concentration of NO will increase; the concentrations of N2 and O2 will decrease.B) 1.8 C) 4.2×10^5 C)D) 2.4×10^{-6}					
N45 - ICE Tables	•			/ 4				
85. Consider the reaction: $2SO_{2}(g) + O_{2}(g) \rightleftharpoons 2SO_{3}(g) a$ constant temperature. Initially container is filled with pure S a pressure of 2 atm, after whi equilibrium is reached. If y is partial pressure of O ₂ at equil the value of K _p is: A) $\frac{(2-2y)^{2}}{(y^{2})(2y)} \xrightarrow{(2)} \frac{(2-y)^{2}}{(2y)^{2}}$ B) $\frac{(2-y)^{2}}{(y^{2})(y/2)} \xrightarrow{(2)} \frac{(2-2y)^{2}}{(2y)^{2}}$	y a $O_3(g)$ at the the O_25 moles of N ₂ H ₄ , container. If there are N ₂ O at equilibrium, N ₂ are present at equination A) 1.8×10^{-2} B) 3.6×10^{-2} C) 5.4×10^{-2} D) 1.1×10^{-1}	10 moles of N_2O and in a 10.0-L e 0.064 moles of how many moles of	 87. 2NOCl(g) ≓ 2NO(g) + Cl₂(<i>K</i> = 1.6 x 10⁻⁵. 1.00 mole of NOCl and 0.927 mole of pu are placed in a 1.00-L conta Calculate the equilibrium concentration of NO(g). A) 4.15 × 10⁻³ M B) 9.27 × 10⁻¹ M C) 1.08 M D) 5.88 × 10⁻³ M 	$ \begin{array}{c} \text{pure} & \text{a high temperature. If an} \\ \text{re } \text{Cl}_2 & \text{equimolar mixture of} \end{array} $				

N46 - Acids and Bases and pH Calculations										
89. Calculate the $[OH^-]$ in a solution that has a pH of 3.65. 90. A solution has $[H^+] = 4.9 \times 10^{-3} M$. The $[OH^-]$ in this solution is A) $4.5 \times 10^{-11} M$ in this solution is B) $1.0 \times 10^{-7} M$ A) $4.9 \times 10^{-11} M$ C) $2.2 \times 10^{-4} M$ B) $4.9 \times 10^{-17} M$ D) $2.7 \times 10^{-15} M$ C) $2.0 \times 10^{-12} M$ D) $1.0 \times 10^{-14} M$			91. Calculate the [H ⁺] in a 0.086 M solution of HCN, $K_a = 6.2 \times 10^{-10}$. A) 1.0×10^{-7} M B) 7.3×10^{-6} M C) 5.3×10^{-11} M D) 1.5×10^{-5} M			 92. Which of the species below, when dissolved in H₂O, will not produce a basic solution? A) SO₂ B) NH₃ C) BaO D) Ba(OH)₂ 				
N48 - Weak Acids and Bases										/ 4
93. Identify the Bronsted acids and the following equation (A = Br acid, B = Bronsted base): HSO ₃ ⁻ + CN ⁻ \rightarrow HCN + A) B A B B) B B A C) A B A D) A B B	or weak acid, F 0 × 10 ⁻⁶ . Calco H of a 0.79 M s THX.) 0.10) 3.05) 6.10) 10.95	ulate the	e the acid. If the pH of a 1.50 x added to water. The reaction produces of					ne mole morphine t is the pH		
N49 - Salts										/ 4
97. Which of the following correct HF NH ₃ $K_a = 3.5 \times 10^4$ $K_b = 1.8 \times 10^{-5}$ A) NaCN = acidic, NH ₄ F = ba B) NaCN = acidic, NH ₄ F = ne C) NaCN = basic, NH ₄ F = basic D) NaCN = basic, NH ₄ F = acid	in aque A) True. 7 a weak B) False. solutio strong C) True. 7 D) True. 7	eous solution This is because a acid. The species on because i acid. This is because This is because ion for prot	e species Cl ⁻ is not a good bon. suse Cl ⁻ is the conjugate ba s Cl ⁻ is a good base in aque it is the conjugate base of a suse Cl ⁻ is a good proton do suse water has a stronger ons than does Cl ⁻ .	se of cous	NaOCl	solution of = 3.00×1		 0. Calculate of a 0.05 solution K_{b NH3} = A) 5.28 B) 8.72 C) 7.0 D) 3.44 	5 M NH4Cl 1.8 x 10 ⁻⁵	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$(pn) HOiJE$ $(pn) HOiJE + 2NaNO_3(aq)$	$Va_{3}PO_{4}(aq) + I_{2}(s)$ $\rightarrow Cu(OH)_{2}(s)$ $\rightarrow Cu(OH)_{2}(s)$ $+ (aq) + 2OH(a)$	$\begin{array}{l} \qquad \qquad$	31. D 31. D 32. $2N(a(s) + 2NO_3)(aq) + 2NO_3$ $Cu^{2+}(aq) + 2NO_3$ $Cu(OH)_2(s) + 2NO_3$ $Cu^{2+}(aq) + 2$	20° V to C to C ts' V tt' V tt' V ts' D tt' V ts' D ts' V ts' D ts' V ts' V ts' V	20 ² V 28 ² D 28 ² V 29 ² V 20 ² V 20 ² V 20 ² D 20 ² C 20 ² C	20° C 96° B 98° D 98° D 98° C 98° B 99° B 93° D 93° D 93° D 93° D 93° C 93° J 91° C	80° V 23° D 24° D	80. C 87. A 88. A 88. A 88. A 88. C 88. C 88. D 88. D 88. D 88. D 88. D 88. D 88. D	100° V 36° C 36° D 36° B 32° C 37° B 33° C 33° C