Electrochemistry Concepts

Target: I can assign oxidation numbers and balance redox reactions.

N42 - Electrochemistry

Concepts

Electrochemistry

Mnemonics

LEO goes GER Loss of Electrons is Oxidation Gain of Electrons is Reduction

OIL RIG Oxidation is Loss of Electrons Reduction is Gain of Electrons

Examples

Oxidation Ag \rightarrow Ag⁺ + e⁻ Cu \rightarrow Cu²⁺ + 2e⁻

Reduction $Ag^+ + e^- \rightarrow Ag$ $Cu^{2+} + 2e^- \rightarrow Cu$ The charge an atom in a compound would have if the compound was composed of ions.

Helps track how the electrons are moving around during a reaction.

Sometimes easy to determine, sometimes complex.

 $KF \rightarrow K^+ + F^-$ K ox # = +1, F ox # = -1

Rules for Assigning Oxidation Numbers

- 1. Any uncombined element is 0.
- 2. Monatomic ion equals the charge on the ion.
- 3. The more-electronegative element in a binary compound is assigned the number equal to the charge it would have if it were an ion.
- 4. Fluorine in a compound is always -1
- 5. Oxygen is -2 unless it is combined with F, when it is +2, or it is in a peroxide, such as H_2O_2 , when it is -1

- 6. Hydrogen in most of its compounds is +1 unless it is combined with a metal, in which case it is -1
- In compounds, the elements of groups 1 and 2 as well as aluminum have oxidation numbers +1, +2 and +3 respectively.
- 8. The sum of the oxidation numbers of all atoms in a neutral compound is 0.
- 9. The sum of the oxidation numbers of all atoms in a polyatomic ion equals charge of the ion.

Balancing Redox Equations

More complicated than balancing normal reactions. You have to balance the electrons, not just the atoms! Steps

- 1. Assign oxidation numbers to determine which things are oxidized and which are reduced.
- 2. Split the rxn into two halves oxidation half and reduction half. Include electrons.
- 3. Balance the atoms.
- 4. Balance the charge by balancing the number of electrons.
- 5. Add half reactions back together, simplify, and CHECK.

Best Advice...

USE PENCIL!

DON'T CRAM YOUR WORK! USE LOTS OF SPACE!

DON'T PANIC!

STUCK??? ERASE AND START OVER.

Assign oxidation states

Determine the element oxidized and the element reduced.

$\begin{array}{cccc} Ce^{4+} + Sn^{2+} \rightarrow & Ce^{3+} + Sn^{4+} \\ +4 & +2 & +3 & +4 \end{array}$

monoatomic ions match their charge

Assign oxidation states

Determine the element oxidized and the element reduced.

 $\begin{array}{cccc} Ce^{4+}+Sn^{2+} \rightarrow & Ce^{3+}+Sn^{4+} \\ +4 & +2 & +3 & +4 \end{array}$ $\begin{array}{cccc} \text{LEO goes GER} \\ \text{Sn}^{2+} \text{ lost electrons = oxidized, } +2 \rightarrow +4 \\ \text{Ce}^{4+} \text{ gained electrons = reduced, } +4 \rightarrow +3 \end{array}$

Write oxidation and reduction half-reactions, including electrons

Oxidation electrons being lost, products Reduction electrons being gained, reactants

Sn went from +2 \rightarrow +4, that's a loss of...

Oxidation: $Sn^{2+} \rightarrow Sn^{4+} + \underline{2e^{-}}$ Reduction: $Ce^{4+} + \underline{e^{-}} \rightarrow Ce^{3+}$

Ce went from +4 \rightarrow +3, that's a gain of...

Balance Atoms – already done this time! Oxidation electrons being lost, products Reduction electrons being gained, reactants

Sn went from +2 \rightarrow +4, that's a loss of...

Oxidation: $Sn^{2+} \rightarrow Sn^{4+} + 2e^{-}$ Reduction: $Ce^{4+} + e^{-} \rightarrow Ce^{3+}$

Ce went from +4 \rightarrow +3, that's a gain of...

Balance the charge by balancing the # of e⁻

Balance electrons between half-reactions.
Least Common Multiple

Oxidation: 1 x ($Sn^{2+} \rightarrow Sn^{4+} + 2e^{-}$) Reduction: 2 x ($Ce^{4+} + e^{-} \rightarrow Ce^{3+}$)

Oxidation: $Sn^{2+} \rightarrow Sn^{4+} + 2e^{-}$ Reduction: $2Ce^{4+} + 2e^{-} \rightarrow 2Ce^{3+}$

Add half reactions together, simplify, check

Make sure the atoms balance AND the charges

Oxidation: $Sn^{2+} \rightarrow Sn^{4+} + 2e^{-}$ Reduction: $2Ce^{4+} + 2e^{-} \rightarrow 2Ce^{3+}$

$$Sn^{2+} + 2Ce^{4+} + 2e^{-} \rightarrow Sn^{4+} + 2e^{-} + 2Ce^{3+}$$

$$Sn^{2+} + 2Ce^{4+} \rightarrow Sn^{4+} + 2Ce^{3+}$$

CHECK: Atoms balanced – yes! Charges balanced – yes!

5

Assign oxidation states

are 0

Determine the element oxidized and the element reduced.

ions match

their charge

Yes, I know this isn't balanced! That is what we are working on!

oxygen -2, not in one of the exceptions.

$$\begin{array}{cccc} CI_2 + I^- + \rightarrow & 2CI^- + IO_3^- \\ 0 & -1 & -1 & +5 & -2 \\ elements & monoatomic & monoatomic & x + 3 \end{array}$$

ions match

their charge

x + 3(-2) = -1sum must equal the overall charge on ion x = +5

Assign oxidation states

Determine the element oxidized and the element reduced.

$\begin{array}{cccc} CI_2 + I^- + \rightarrow & 2CI^- + IO_3^- \\ 0 & -1 & -1 & +5 \end{array}$

LEO goes GER I lost electrons = oxidized, $-1 \rightarrow +5$ Cl gained electrons = reduced, $0 \rightarrow -1$

Write oxidation and reduction half-reactions, including electrons

Oxidation electrons being lost, products Reduction electrons being gained, reactants

I went from -1 \rightarrow +5, that's a loss of...

Yes, I know these are not balanced! That is what we are still working on! It takes a while!

Oxidation: $I^- \rightarrow IO_3^- + \underline{6e^-}$ Reduction: $CI_2 + \underline{2e^-} \rightarrow 2CI^-$

Each CI went from $0 \rightarrow -1$, that's a gain of...

Balance the atoms in the half reactions

- First balance elements other than H and O.
- Add H₂O where O is needed.
- Add H⁺ where H is needed

Oxidation: $I^- + \underline{3H_2O} \rightarrow IO_3^- + 6e^- + \underline{6H^+}$

Reduction: $Cl_2 + 2e^- \rightarrow 2Cl^-$

4

Balance the charge by balancing the # of e⁻

Balance electrons between half-reactions.
Least Common Multiple

Oxidation: $1 \times (I^- + 3H_2O \rightarrow IO_3^- + 6 e^- + 6H^+)$ Reduction: $3 \times (CI_2 + 2 e^- \rightarrow 2 CI^-)$

Oxidation: $I^- + 3H_2O \rightarrow IO_3^- + 6 e^- + 6H^+$ Reduction: $3CI_2 + 6 e^- \rightarrow 6 CI^-$

Add half reactions together, simplify, check

Make sure the atoms balance AND the charges

Oxidation: $I^- + 3H_2O \rightarrow IO_3^- + 6 e^- + 6H^+$ Reduction: $3CI_2 + 6 e^- \rightarrow 6 CI^-$ 5

 $I^{-} + 3H_2O + 3CI_2 + 6e^{-} \rightarrow IO_3^{-} + 6e^{-} + 6H^{+} + 6CI^{-}$

 $\text{I}^- + 3\text{H}_2\text{O} + 3\text{CI}_2 \rightarrow \text{IO}_3^- + 6\text{H}^+ + 6\text{ CI}^-$

CHECK: Atoms balanced – yes! Charges balanced – yes!

WHAT IF IT IS IN BASIC SOLUTION ???!

Add OH- to both sides to balance out the H⁺ present

$$I^{-} + 3H_{2}O + 3CI_{2} \rightarrow IO_{3}^{-} + 6H^{+} + 6 CI^{-} + 6OH^{-}$$

6

 $\mathsf{I}^- + 3\mathsf{H}_2\mathsf{O} + 3\mathsf{CI}_2 + 6\mathsf{OH}^- \rightarrow \mathsf{IO}_3^- + 6\mathsf{H}_2\mathsf{O} + 6\mathsf{CI}^-$

WHAT IF IT IS IN BASIC SOLUTION ???!

Then cancel out any waters that you can

$$I^{-} + 3H_{2}O + 3CI_{2} \rightarrow IO_{3}^{-} + 6H^{+} + 6 CI^{-} + 6OH^{-}$$

6

$$|^{-} + 3H_{2}O + 3Cl_{2} + 6OH^{-} \rightarrow IO_{3}^{-} + 6H_{2}O + 6CI^{-}$$
$$3H_{2}O \text{ left!}$$

$\text{I}^- + 3\text{CI}_2 + 6\text{OH}^- \rightarrow \text{IO}_3^- + 3\text{H}_2\text{O} + 6\text{ CI}^-$

CHECK: Atoms balanced – yes! Charges balanced – yes!

A Few More Electrochemistry Terms

Oxidizing agent

The substance that is doing the oxidizing of the other substance. Whichever substance is reduced is the oxidizing agent.

Reducing agent

The substance that is doing the reducing of the other substance. Whichever substance is oxidized is the reducing agent.

YouTube Link to Presentation

https://youtu.be/-y2xTX_BVsA