
	STUDY LIST
Brønsted-Lowry Acids	pH, pOH, [H⁺], and [OH⁻]
I can	\Box write the equation for the autoionization of H ₂ O.
recognize common acids and bases.	recognize that every aqueous solution contains both [H ⁺] ions and [OH ⁻] ions.
write balanced equations for their ionization in water.	
demonstrate that H ₂ O can sometimes be included as a reactant in ionization equations.	write the K _w expression for H ₂ O and know the value of $K_w = [H^+] [OH^-] = 1 \ge 10^{-14} @ 25^{\circ}C.$
recognize when a substance can be amphoteric.	\Box use K _w to calculate [H ⁺] and [OH ⁻].
explain that a Brønsted base (proton acceptor) needs a lone pair while a Brønsted acid (proton donor) requires a proton (H atom) to donate.	state that $pH = -log[H^+]$ and $pOH = -log[OH^-]$
	recognize that the $[H^+]$ of a strong acid solution comes from the concentration of the acid but the $[H^+]$ of a weak
state the definition of Brønsted acid and base.	acid solution requires an equilibrium calculation.
recognize a Brønsted acid and base in a reaction and identify its conjugate.	\square calculate [H ⁺] as 10^{-pH}
	determine the number of significant figures in a pH
Strengths of Acids & Bases	calculation.
use Tables 17.3 and 17.4 to decide on the relative strengths of acids and bases.	Equilibrium Calculations
\square explain the relative strengths of oxoacids such as HOCl,	\Box write the K _a and K _b expressions for weak acids and bases.
HOBr, and HOI	solve "ice box" problems for acid and base equilibria.
as HOCl, HClO ₂ , HClO ₃ , and HClO ₄	Correctly use the "x is small enough to ignore"
explain the relative strengths of acids such as	approximation.
HF, HCl, HBr, and HI or H2O, H2S, H2Se, and H2Te	know when to use the short cut for K_a problems $x = \sqrt{x}$
recognize that a very strong acid has a weak conjugate	$\sqrt{K_a \times [HA]_i}$ where HA = generalized acid (this also
base and a very weak acid has a strong conjugate base.	applies to K _b problems)
recognize that a weak acid may have a weak conjugate base.	Hydrolysis
compare the conjugate bases of two acids with known relative strengths.	state that salts (ionic compounds) can make a solution acidic, basic, or have no effect on the pH.
state that an acid-base equilibrium favors the weak acid	write the ionization equations for the conjugate base of a weak acid, $A^- + H_2O \leftrightarrows HA + OH^-$
and weak base: $NH_3 + H_2O \leftrightarrows NH_4^+ + OH^-$	determine the K _b of a conjugate base from the K _a of its acid knowing K _a \cdot K _b = K _w
explain the above situation in terms of the strong donor having donated and the strong acceptor having accepted.	Calculate the pH of a salt solution that contains the
\square know the strong acids and bases.	conjugate base of a weak acid or the conjugate acid of a weak base.

What Can Be Acids?

There are a few neutral molecules that are strong acids, HCl, HBr, HI, HNO₃, H₂SO₄, HClO₃ & HClO₄ that dissociate 100% in water.

Neutral molecules that are weak acids include molecules such as HF, H₂S, and oxoacids that are not listed above (H₂SO₃, HNO₂, H₂CO₃, etc.), and many organic acids, HC₂H₃O₂, HCOOH, etc.

Cations (positive ions) can be acids, such as NH₄⁺, but metal ions can also make solutions acidic especially if they have 2+ or 3+ charges. They are surrounded by H₂O in solution and polarize the H-O bond enough that some of the H atoms leave. (Ex: Cu^{2+} , Al^{3+} , and Fe^{3+}) $Fe(H_2O)_6^{3+} + H_2O \leftrightarrows H_3O^+ + Fe(H_2O)_5OH^{2+}$

Anions (negative ions) can also be acids. If an anion still has a H atom, it can donate it. Common examples are bicarbonate ion, HCO₃⁻ and dihydrogen phosphate ion, H₂PO₄⁻, which acts as the acid in baking soda.

Diprotic Acids

 $K_{a1} = 1 \times 10^{-7}$

write the two acid ionization steps for any diprotic acid. $H_2S + H_2O \leftrightarrows H_3O^+ + HS^-$ Example: $HS^- + H_2O \leftrightarrows H_3O^+ + S^{2-}$ $K_{a2} = \frac{\left[H_{3}O^{+}\right]S^{2-}}{\left[HS^{-}\right]}$

state that the first ionization constant, Kal, is always larger than the second constant, K_{a2} .

state that the only strong diprotic acid, H₂SO₄, is only strong for the first ionization. $K_{a2} = 1.2 \times 10^{-2}$.

explain that when calculating the pH of a diprotic acid, only the first ionization needs to be considered. $H_2S + H_2O \leftrightarrows H_3O^+ + HS^-$

$$HS^- + H_2O \leftrightarrows H_3O^+ + S^2$$

The $[H_3O^+]$ from the first ionization is small. The $[H_3O^+]$ from the second ionization is *very* small and made even smaller by the presence of H₃O⁺ from the first ionization (Le Châtelier's Principle).

Bottom Line: treat the acid as monoprotic and use K_{al} as the K_a.

state that $[S^{2-}] = K_{a2}$.

explain this fact by using information from the previous situation. Because of the first ionization:

 $H_2S + H_2O \leftrightarrows H_3O^+ + HS^-$

$$[H_3O^+] = [HS^-]$$

The changes caused to these two concentrations by the second ionization are small (and made negligible by Le Châtelier's Principle.)

So,
$$K_{a2} = \frac{\left[H_{3}O^{+}\right]S^{2-}}{\left[HS^{-}\right]}$$
 becomes $K_{a2} = [S^{2-}]!$

combine the two ionization steps and combine the two Ka's.

$$\begin{array}{l} H_2S + 2 \ H_2O \leftrightarrows 2 \ H_3O^+ + S^{2-} \\ K_a = K_{a1} \cdot K_{a2} = 1 \ x \ 10^{-26} \end{array}$$

use this equation and K_a when a problem is given in which the pH is adjusted to a known value by the addition of another acid.

Example from the Ch 17 Practice Test:

13. What is the S^{2-} concentration in a saturated solution (0.10 M) of H₂S, in which the pH has been adjusted to 6.00 by the addition of HCl? For H_2S , $K_{a1} = 1.1 \times 10^{-7}$ and $K_{a2} =$ 1.0 x 10⁻¹⁹.