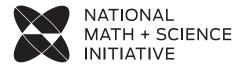
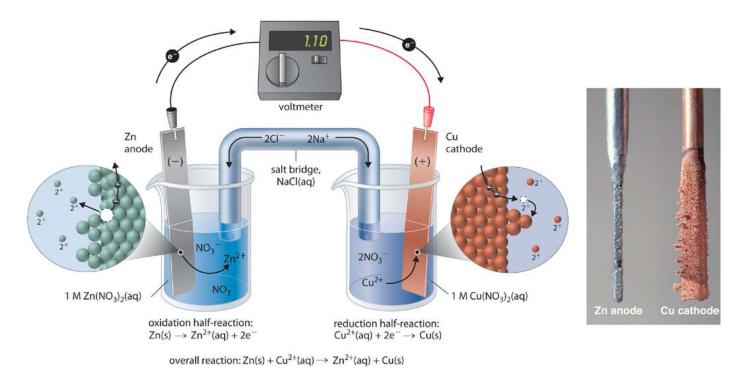

ELECTROCHEMICAL CELLS

Electrochemical Cells: A Comparison							
Galvanic (voltaic) cells	spontaneous oxidation-reduction reaction	Is separated into 2 half-cells	Electrodes made from metals (inert Pt or C if ion to ion or gas)	Battery – its cell potential drives the reaction and thus the e^{-}			
Electrolytic cells	non-spontaneous oxidation-reduction reaction	Usually occurs in a single container	Usually inert electrodes	Battery charger – requires an external energy source to drive the reaction and e ⁻			

GALVANIC CELL


Energy released by spontaneous redox reaction is converted to electrical energy.


ELECTROLYTIC CELL

Electrical energy is used to drive nonspontaneous redox reaction.

	The Galvanic Cell: What is what and what to know?	
ANODE: AN OX	<u>Anode</u> – the electrode where <i>oxidation</i> occurs. Over time the mass of the anode may decrease as the metal is oxidized into ions.	
CATHODE: RED CAT	$\underline{Cathode}$ – the electrode where <i>reduction</i> occurs. Over time the mass of the cathode may increase as the metal ions in the solution are reduced and plated onto it.	
FAT CAT	Electron Flow – From Anode To CAThode	
Ca + hode	Cathode is + galvanic cells	
Salt Bridge	<u>Salt Bridge</u> – provides ions to balance the charge in each cell; contains a neutral salt that is very soluble (avoids precipitation issues). The salt cations flow into the cathode and the salt anions flow into the anode.	

The Galvanic Cell: How it Works!

The above picture shows the oxidation-reduction reaction between Zn and Cu. The diagram of the cell clearly shows: the anode and cathode; the half-reaction that occurs at each electrode, the direction of electron flow, the direction of ion movement from the salt bridge, the overall reaction, as well as the E°_{cell} for the reaction.

Calculating Standard Cell Potential (E°_{cell})						
The difference in electrical potential between the two half-reactions is measured with a voltmeter. The difference between the cell potentials of the two half-reactions determines the overall cell potential for the reaction.						
1	Look at a table of Standard Reduction Potentials (or the reduction potentials that are provided). Write both <i>reduction</i> reactions from the table with their voltages.					
2	THE MORE POSITIVE REDUCTION POTENTIAL IS REDUCED. THE LEAST POSITIVE IS OXIDIZED.					
3	Reverse the equation that will be oxidized; be sure to change the sign of the voltage [this is now $E^{\circ}_{\text{oxidation}}$]					
4	Balance and add the two half-reactions together.					
5	Now add the two cell potentials together. $E^{\circ}_{cell} = E^{\circ}_{oxidation} + E^{\circ}_{reduction}$					
	° indicates <i>standard conditions</i> (1 atm, 25°C; 1 <i>M</i>)					

$\operatorname{Zn}^{2+}(aq) + 2e^{-} \rightarrow \operatorname{Zn}(s)$ $\operatorname{Cu}^{2+}(aq) + 2e^{-} \rightarrow \operatorname{Cu}(s)$	$E^{\circ}_{\text{reduction}} = -0.76 \text{ V}$ $E^{\circ}_{\text{reduction}} = +0.34 \text{ V}$	
More positive is reduced (+ 0.3	$4 \text{ V} > -0.76 \text{ V}) - \text{Cu}^{2+}$ (+0.34) is reduced and Zn oxidized	
$\operatorname{Zn}(s) \to \operatorname{Zn}^{2+}(aq) + 2e^{-}$ $\operatorname{Cu}^{2+}(aq) + 2e^{-} \to \operatorname{Cu}(s)$	$E^{\circ}_{\text{oxidation}} = + 0.76 \text{ V}$ $E^{\circ}_{\text{reduction}} = + 0.34 \text{ V}$	
21.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.		