1. There are two driving forces for reactions. Reactions tend toward:

minimum **Enthalpy**, ΔH (heat energy) $\Delta H -$, ΔH <0, downhill maximum **Entropy**, ΔS (randomness) ΔS +, ΔS >0, uphill

- 2. Recognize whether $\Delta S > 0$ or < 0 Entropy increases, $\Delta S +$, $\Delta S > 0$:
 - from solid to liquid to gas
 - fewer moles (g) to more moles (g)
 - simpler molecules to more complex molecules
 - smaller molecules to longer molecules
 - ionic solids with strong attractions to ionic solids with weaker attractions
 - separate solute & solvent to solutions
 - gas dissolved in water to escaped gas
- 3. Product or Reactant favored reactions depend on ΔH, ΔS, and absolute Temp

ΔH	ΔS	Product-Favored
+	+	at higher temperatures
_	_	at lower temperatures
_	+	at all temperatures
+	_	never (reactant-favored at all temps)

- REFERENCE SHEET
- 4. Many books use the term "spontaneous" for "product-favored."

A spontaneous reaction does not necessarily mean a fast reaction. The SPEED of a reaction is Kinetics (Ch 12)... we are discussing whether a reaction CAN OCCUR which is Thermodynamics (Ch 6 and Ch 18).

5. Gibbs Free Energy, Δ G, puts the effects of Δ H, Δ S, and Temperature together.

$$\Delta \mathbf{G} = \Delta \mathbf{H} - \mathbf{T} \Delta \mathbf{S}$$

 Δ G<0, Δ G -, product-favored reaction Δ G>0, Δ G +, reactant-favored reaction Δ G=0, reaction is at equilibrium

Note that ΔH is usually in kJ/mol ΔS is usually in J/mol·K

ΔH_{sys} -T ΔS_{sys} = ΔG_{sys}					
ΔH	ΔS	Δ G	At		
-	+	-	Any temp		
exothermic	more disorder	ALWAYS spont.			
+	_	+	Any temp		
endothermic	less disorder	NEVER spont.			
-	_	_	Low Temp		
exothermic	less disorder	spont.	Low romp		
-	_	+	High Temp		
exothermic	less disorder	NOT spont.			
+	+	_	High Temp		
endothermic	more disorder	spont.			
+	+	+	Low Temp		
endothermic	more disorder	NOT spont.			

	∆#<0	∆H > O
<u>∆</u> s > 0	spontaneous at all T (GG<0)	Spontaneous at highT (when TAS is large)
D240	Spontaneous at low T (when TDS is small)	Non-spontaneous at all T (DG>O)