Chemical Kinetics: Rates of Reaction

Three Ways to Speed Up a Reaction

Temperature (more and harder collisions) **Concentration** (more collisions) increase *concentration* (of solutions) increase *partial pressure* (of gases) increase *surface area* (different phases)

Catalyst (more effective collisions) homogeneous (used & reformed) heterogeneous (surface catalyst) [catalyst provides an alternate mechanism that requires lower energy collision or ensures that correct particles collide]

Converting Rates

Reaction: $2A + 3B \rightarrow 4C$ $\wedge [A]$ $\wedge [B] _ 1 \Delta [C]$

$$-\frac{1}{2}\frac{\Delta[A]}{\Delta t} = -\frac{1}{3}\frac{\Delta[B]}{\Delta t} = \frac{1}{4}\frac{\Delta[C]}{\Delta t}$$

NOTE: The Rate Law **CANNOT** be determined from the overall reaction. It MUST be determined **experimentally** because the rate law reflects only the "rate determining step."

Rate Law matches the Rate Determining Step Examples for: $2A + 3B \rightarrow C$

Examples for. 211			
Rate Law	Rate Determining Step		
matches	in the mechanism		
Rate = $k [A][B]$	$A + B \rightarrow X$ (slow)		
Rate = $k [A]^2$	$A + A \rightarrow X \text{ (slow)}$		
Rate = k	$A + A \leftrightarrows X$ (fast)		
$[A]^{2}[B]$	$B + X \rightarrow Y$ (slow)		
	This could be a mechanism		
	that depends on an enzyme.		
Rate $=$ k	Concentrations do not		
	matter.		

Graphical Method of Order of Reaction

order	straight-line plot	Slope
0	[R] _t vs. t	-k
1	ln[R] _t vs. t	-k
2	1/[R] _t vs. t	k

STUDY INFO From Paul Groves

Two Important Diagrams

PE energy profile of a reaction

Exothermic, downhill, negative ΔH Endothermic, uphill, positive ΔH

activation energy $(E_a) =$ energy barrier

- activated complex (at the peak)
- whether a reaction is fast or slow depends on the activation energy in the PE profile
- PE profile does not change with change in temperature of the reactants?
- adding a catalyst lowers the E_a

The KE distribution of a substance

- temperature is the average KE
- -increasing temperature spreads out curve to the right, increases average KE

- adding a **catalyst** moves the threshold energy to the left.

Reaction mechanisms

Overall: $4 \text{ HBr} + \text{O}_2 \rightarrow 2 \text{ Br}_2 + 2 \text{ H}_2\text{O}$ Mechanism: $\text{HBr} + \text{O}_2 \rightarrow \text{HOOBr}$ $\text{HOOBr} + \text{HBr} \rightarrow 2 \text{ HOBr}$ $2\text{HOBr} + 2\text{HBr} \rightarrow 2\text{Br}_2 + 2\text{H}_2\text{O}$ [NOTE: HOOBr and HOBr are "intermediates"]

Chain Reactions

 $H_{2} + Cl_{2} \rightarrow 2HCl$ - initiation steps $Cl_{2} \rightarrow 2Cl\bullet$ - propagation steps $Cl\bullet + H_{2} \rightarrow HCl + H\bullet$ $H\bullet + Cl_{2} \rightarrow HCl + Cl\bullet$ - termination step $Cl\bullet + Cl\bullet \rightarrow Cl_{2}$

 $2O_3 \rightarrow 3O_2$ - initiation step F₂CCl₂ + UV light \rightarrow F₂CCl• + Cl• - propagation steps Cl• + O₃ \rightarrow O₂ + ClO• ClO• + O₃ \rightarrow 2O₂ + Cl•

- termination step

 $Cl \bullet + Cl \bullet \rightarrow Cl_2$ One Cl• can destroy 100,000 O₃ molecules.

Arrhenius Equation

 $\ln k = \frac{-E_a}{R} \left(\frac{1}{T}\right) + \ln A$ R = 8.31 J mol⁻¹ K⁻¹ (Units: E_a is in kJ mol⁻¹)

Use the rate law to calculate the rate constant, k, at two different temperatures.

Determine activation energy, E_a , using the Arrhenius Equation. Since the above equation fits the "y = mx + b" expression, you can plot a graph of ln *k* (y-axis) vs. 1/T (x-axis). The slope of the line is $-E_a/R$.

Here is how the **equations** are given on the AP Exam and how they will appear on your chapter test:

These are the first order integrated rate law, the second order integrated rate law, and the Arrhenius Equation.

$$\ln[\mathbf{A}]_{t} - \ln[\mathbf{A}]_{0} = -kt$$
$$\frac{1}{[\mathbf{A}]_{t}} - \frac{1}{[\mathbf{A}]_{0}} = kt$$

$$\ln k = \frac{-E_a}{R} \left(\frac{1}{T}\right) + \ln A$$

