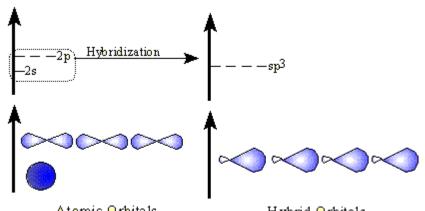
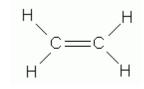
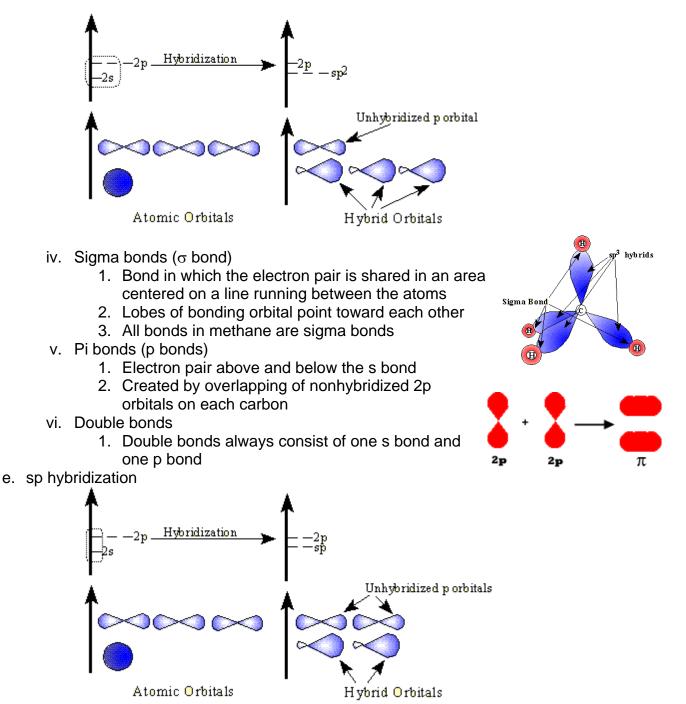
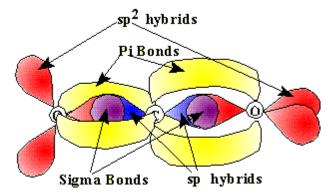

Chapter 9 - Covalent Bonding: Orbitals


- 1. Hybridization and the Localized Electron Model
 - a. Hybridization
 - i. The mixing of two or more atomic orbitals of similar energies on the same atom to produce new orbitals of equal energies
 - b. Hybrid Orbitals
 - i. Orbitals of equal energy produced by the combination of two or more orbitals on the same atom
 - c. Evidence for hybridization of carbon Methane and sp³
 - i. Four bonds of equal length and strength

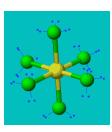
Carbon isolated configuration


four sp ³ hybrid orbitals have formed, each having one electron



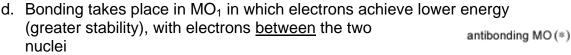

- ii. Four effective pairs of electrons surround the carbon
- "Whenever a set of equivalent tetrahedral atomic orbitals is required by an atom, this model assumes that the atom adopts a set of sp³ orbitals; the atom becomes hybridized"
- d. sp² hybridization
 - i. Trigonal planar structure, 120° angle, in ethane (ethylene) rules out sp³ hybridization
 - ii. sp² hybridization creates 3 identical orbitals of intermediate energy and length and leaves one unhybridized p orbital
 - iii. effective pairs of electrons surround the carbon (double bond treated as one effective pair)

- i. Each carbon has two hybrid orbitals and two unhybridized 2p orbitals
- ii. Carbon dioxide
 - 1. Oxygens have 3 effective pairs of electrons (sp₂ hybrids) (1) 1 double bond, two lone pairs

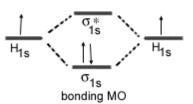

2. Carbons have 2 effective pairs (2 double bonds)

Notice that the sp2 orbitals on the two oxygens are at 90° angles, as are the p bond between carbon and oxygen

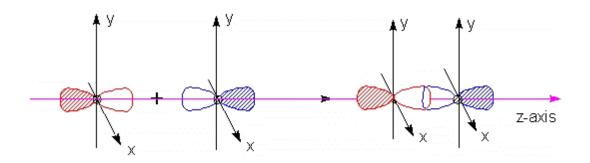
- f. dsp³ Hybridization
 - i. Five effective pairs around a central atom
 - ii. Trigonal bypyramidal shape
 - iii. PCl₅ is an example
- g. d²sp³ Hybridization
 - i. Six effective pairs around a central atom
 - ii. Octahedral structure
 - iii. SF_6 is an example

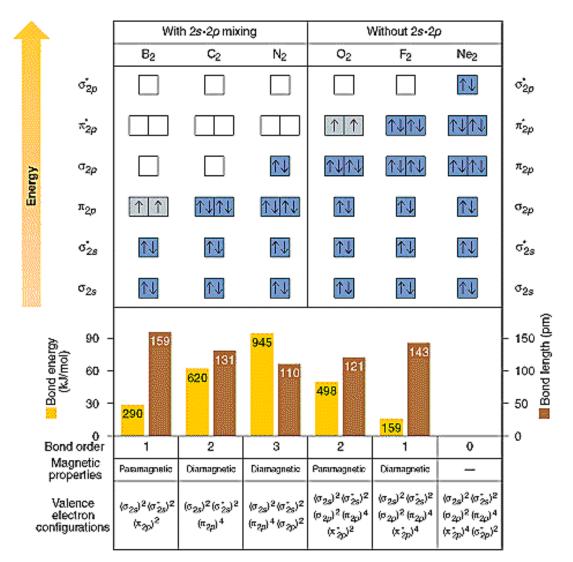


Question: Why doesn't carbon undergo dsp₃ or d₂sp₃ hybridization, while phosphorous and sulfur do undergo this type of hybridization?


Atomic	Type of	# of hybrid	Geometry	# of Effective
Orbitals	hybridization	orbitals		pairs
s, p	sp	2	Linear	2
s, p, p	sp ²	3	Trigonal-planar	3
s, p, p, p	sp ³	4	Tetrahedral	4
s, p, p, p, d	dsp ³	5	Trigonal bipyramidal	5
s, p, p, p, d, d	d ² sp ³	6	Octagonal	6

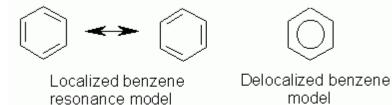
- 2. The Molecular Orbital Model
 - a. Shortcomings of the Localized Electron Model
 - i. Electrons are not actually localized
 - ii. Does not deal effectively with molecules containing unpaired electrons
 - iii. Gives no direct information about bond energies
 - b. Molecular Orbitals
 - i. Can hold two electrons with opposite spins
 - ii. Square of the orbital's wave function indicates electron probability
 - c. The Hydrogen Molecule (H₂)
 - i. Two possible bonding orbitals, shapes determine by Y2




- e. Both orbitals are in line with the nuclei, so they are molecular orbitals
- f. Higher energy orbital is designated as antibonding (*).
- g. Electron configuration of H₂ can be written as σ_{1s}^{2}
- 3. Bond Order
 - a. Bond order is the difference between the number of bonding electrons and the number of antibonding electrons, divided by two
 - b. Larger bond order =
 - i. greater bond strength
 - ii. greater bond energy
 - iii. shorter bond length
- 4. Bonding in Homonuclear Diatomic Molecules
 - a. In order to participate in molecular orbitals, atomic orbitals must overlap in space
 - b. Larger bond order is favored
 - c. When molecular orbitals are formed from p orbitals, σ orbitals are favored over π orbitals (σ interactions are stronger than π interactions)
 - i. Electrons are closer to the nucleus = lower energy

S

- d. Paramagnetism
 - i. Magnetism can be induced in some nonmagnetic materials when in the presence of a magnetic field
 - 1. Paramagnetism causes the substance to be attracted into the inducing magnetic field
 - a. (1) associated with unpaired electrons
 - 2. Diamagnetism causes the substance to be repelled from the inducing magnetic field
 - a. (1) associated with paired electrons



One can measure magnetic properties FIRST, and use the results (dia- or para-) to determine the energy order of the molecular orbitals

- 5. Bonding in Heteronuclear Diatomic Molecules
 - a. Šimilar, but not identical atoms
 - i. Use molecular orbital diagrams for homonuclear molecules
 - b. Significantly different atoms
 - i. Each molecule must be examined individually
 - ii. There is no universally accepted molecular orbital energy order\
- 6. Combining the Localized Electron and Molecular Orbital Models
 - a. Resonance
 - i. Attempt to draw localized electrons in a structure in which electrons are not localized

Ozone
$$(O_3)$$

 $\ddot{O} = \ddot{O} - \ddot{O}: \longleftrightarrow : \ddot{O} - \ddot{O} = \ddot{O}$

- ii. σ bonds can be described using localized electron model
- iii. π bonds (delocalized) must be described using the molecular orbital model
- b. Benzene
 - i. σ bonds (C H and C C) are sp² hybridized 1. Localized model
 - ii. π bonds are a result of remaining p orbitals above and below the plane of the benzene ring

