Dougherty Valley HS Chemistry - AP Thermochemistry Study Materials Quick Check #4

Name:			Period:	Seat#:	
		1 – I	EXOTHERMI	C AND ENDOTH	IERMIC
Classify	each statement as talking about an [EXO]t	hermic or [E	NDO]thermic r	eaction:	
	surroundings get hot		ΔH is negati	ve	
	PE diagram is uphill		PE diagram	is downhill	
	energy is a product		surrounding	s get cold	
	ΔH is positive		products hav	ve more energy	
	reactants have more energy		energy is a r	eactant	
			2 _	HEAT CALCULA	PIONS
	mL sample of water is heated from 15 sorbed by the water? (Show work)	6.0°C to 35.0			
	J of energy is used to heat 1.25 L of rature of the water?	oom tempe	rature water (2	23.0°C), what is th	ne final

3 - HOT AND COLD OBJECTS

A 100. gram sample of aluminum (specific heat = $0.900 \mathrm{J \cdot g^{-1} \cdot ^{\circ} C^{-1}}$) in boiling water is added to an insulated cup containing 50.0 grams of water at 5.00°C. What will the final temperature of the mixture be? The specific heat of water is $4.184 \mathrm{J \cdot g^{-1} \cdot ^{\circ} C^{-1}}$.
4 – HEATS OF FUSION & VAPORIZATION
Knowing that the ΔH_{fus} for water is 6.02 kJ·mol ⁻¹ , calculate the following:
How much energy (in kJ) is absorbed by 45.0 g of ice as it melts?
What mass of ice can be melted with 75.0 kJ of energy?

5 -	$\Delta \mathbf{H}$	FRO	MC	DA	TA
-----	---------------------	-----	----	----	----

When 10.0 grams of C₅H₁₂ is burned, 453 kJ of energy is released.

What is the $\Delta H_{combustion}$ for C_5H_{12} ?

When 10.0 grams of aluminum melts, 3.929 kJ of energy is required. What is the ΔH_{fus} of Al?

- HESS'S LAW—LONG VERSION

Iron ore can be converted to iron metal with CO gas.

$$FeO(s) + CO(g) \rightarrow Fe(s) + CO_2(g)$$

Calculate the standard enthalpy change for this reaction from these reactions of iron oxides with CO:

(1)
$$3 \operatorname{Fe_2O_3}(s) + \operatorname{CO}(g) \rightarrow 2 \operatorname{Fe_3O_4}(s) + \operatorname{CO_2}(g) \quad \Delta H^{\circ} = -47 \,\mathrm{kJ}$$

(2)
$$\text{Fe}_{2}\text{O}_{3}(s) + 3\text{CO}(g) \rightarrow 2\text{Fe}(s) + 3\text{CO}_{2}(g)$$
 $\Delta H^{\circ} = -25\text{ kJ}$

(3)
$$Fe_3O_4(s) + CO(g) \rightarrow 3 FeO(s) + CO_2(g)$$
 $\Delta H^{\circ} = 19 kJ$

7 - HESS'S LAW - SHORTCUT

chemical	$CO_2(g)$	$H_2O(1)$	$C_5H_{12}(l)$	$C_2H_5OH(l)$
ΔH_{f}	-393.5 kJ·mol ⁻¹	-285.8 kJ·mol ⁻¹	-173.1 kJ·mol ⁻¹	-277.6 kJ⋅mol ⁻¹

Given the above ΔH_f° 's, calculate the $\Delta H_{combustion}$ of pentane, C_5H_{12} .

Calculate the $\Delta H_{combustion}$ of ethyl alcohol, $C_2H_5OH(l)$

8 - MORE HESS'S LAW

chemical	$CO_2(g)$	$H_2O(1)$	$C_8H_{18}(l)$
$\Delta { m H_f}$	-393.5 kJ·mol ⁻¹	-285.8 kJ·mol ⁻¹	??? kJ·mol⁻¹

Knowing that the $\Delta H_{combusion}$ of octane, C_8H_{18} , is -5508.9 kJ·mol⁻¹ calculate the ΔH_f of octane.