Name	
------	--

Period ____ Date ___/___/

6 • Energy and Chemical Reactions

- 1. How many joules are equivalent to 37.7 cal?
 - a) 9.01 J c) 1.51 J b) 4.184 J d) 158 J
- The quantity of heat that is needed to raise the temperature of a sample of a substance 1.00 degree is called its
 - a) heat capacity c) enthalpy
 - b) specific heat d) kinetic energy
- Equal masses of two substances, A & B, each absorb 25 Joules of energy. If the temperature of A increases by 4 degrees and the temperature of B increases by 8 degrees, one can say that
 - a) the specific heat of A is double that of B.
 - b) the specific heat of B is double that of A.
 - c) the specific heat of B is negative.
 - d) the specific heat of B is triple that of A.
- 4. If 25 J are required to change the temperature of 5.0 g of substance A by 2.0°C, what is the specific heat of substance A?

a) $250 \text{ J/g}^{\circ}\text{C}$ c) $10. \text{ J/g}^{\circ}\text{C}$	250 J/g°C	c) 10. J/g°C
---	-----------	--------------

b) 63 J/g°C	d) 2.5 J/g°C
-------------	--------------

PRACTICE TEST

 How much energy is required to change the temperature of 2.00 g aluminum from 20.0°C to 25.0°C? The specific heat of aluminum is 0.902 J/g°C.

a) 2.3 J	c)	0.36 J
b) 9.0 J	d)	0.090 J

- Consider the thermal energy transfer during a chemical process. When heat is transferred to the system, the process is said to be _____
 - and the sign of ΔH is _____.
 - a) exothermic, positive
 - b) endothermic, negative
 - c) exothermic, negative
 - d) endothermic, positive
- 7. What is the ΔE for a system which has the following two steps:

Step 1: The system absorbs 60 J of heat while 40 J of work are performed on it.Step 2: The system releases 30 J of heat while doing 70 J of work.

- a) 100 J c) 30 J
- b) 90 J d) zero
- 8. When two solutions react the container "feels hot." Thus,
 - a) the reaction is endothermic.
 - b) the reaction is exothermic.
 - c) the energy of the universe is increased.
 - d) the energy of both the system and the surroundings is decreased.

- 9. The equation for the standard enthalpy of formation of N_2O_3 is
 - a) $N_2O(g) + O_2(g) \rightarrow N_2O_3(g)$
 - b) $N_2O_5(g) \rightarrow N_2O_3(g) + O_2(g)$
 - c) NO(g) + NO₂(g) \rightarrow N₂O₃(g)
 - d) $N_2(g) + {}^{3/_2}O_2(g) \rightarrow N_2O_3(g)$
- 10. For the general reaction

 $2 A + B_2 \rightarrow 2 AB$, $\Delta H \text{ is } +50.0 \text{ kJ}$.

We can conclude that

- a) the reaction is endothermic.
- b) the surroundings absorb energy.
- c) the standard enthalpy of formation of AB is -50.0 kJ.
- d) the molecule AB contains less energy than A or B_2 .
- 11. Calculate the enthalpy of combustion of C_3H_6 :

 $\begin{array}{ll} C_{3}H_{6}(g)+{}^{9}\!/_{2}O_{2}(g)\to 3CO_{2}+3H_{2}O\\ \text{using the following data:}\\ 3C(s)+3H_{2}(g)\to C_{3}H_{6}(g) & \Delta H^{\circ}=53.3 \text{ kJ}\\ C(s)+O_{2}(g)\to CO_{2}(g) & \Delta H^{\circ}=-394 \text{ kJ}\\ H_{2}(g)+{}^{1}\!/_{2}O_{2}(g)\to H_{2}O(1) & \Delta H^{\circ}=-286 \text{ kJ}\\ \text{a) }-1517 \text{ kJ} & \text{c) }-626 \text{ kJ}\\ \text{b) }1304 \text{ kJ} & \text{d) }-2093 \text{ kJ} \end{array}$

12. Which one of the following would have an enthalpy of formation value (ΔH_f) of zero?

a) H ₂ O(g)	c) H ₂ O(l)
b) O(g)	d) O ₂ (g)

- 13. Calculate the heat of vaporization of titanium (IV) chloride: TiCl₄(l) \rightarrow TiCl₄(g) using the following enthalpies of reaction: Ti(s) + 2Cl₂(g) \rightarrow TiCl₄(l) Δ H°=-804.2 kJ TiCl₄(g) \rightarrow 2Cl₂(g) + Ti(s) Δ H°= 763.2 kJ a) -1567 kJ c) 1165 kJ b) -783.7 kJ d) 41 kJ
- 14. Calculate the enthalpy of reaction for: $D + F \rightarrow G + M$ using the following equations and data: $G + C \rightarrow A + B$ $\Delta H^{\circ} = +277 \text{ kJ}$ $C + F \rightarrow A$ $\Delta H^{\circ} = +303 \text{ kJ}$ $D \rightarrow B + M$ $\Delta H^{\circ} = -158 \text{ kJ}$ a) -132 kJ c) +422 kJ b) -422 kJ d) +132 kJ
- 15. Calculate the standard enthalpy of the reaction for the process $3NO(g) \rightarrow N_2O(g) + NO_2(g)$ using the standard enthalpies of formation (in kJ/mol): NO = 90; N_2O = 82.1; NO_2 = 34.0 a) -153.9 kJ c) -26.1 kJ b) 206 kJ d) 386 kJ
- 16. The standard molar enthalpy of combustion is -1277.3 kJ for the combustion of ethanol.
 C₂H₅OH(l) + 3O₂(g) → 2CO₂(g) + 3H₂O(g)
 Calculate the standard molar enthalpy of formation for ethanol based on the following standard enthalpies of formation:

 $\Delta H^{\circ}_{f} CO_{2} = -393.5 \text{ kJ/mol}$

 $\Delta H^{\circ}_{f} H_2O = -241.8 \text{ kJ/mol}$

- a) -642.7 kJ/mol c) 235.1 kJ/mol
- b) -235.1 kJ/mol d) 642.7 kJ/mol

17. Calculate the amount of heat needed to change 25.0 g ice at 0°C to water at 0°C. The heat of fusion of $H_2O = 333 \text{ J/g}$;

a) 56.5 kJ	c)	7.06 kJ
b) 8.33 kJ	d)	463 kJ

Questions 18-20: (1/2 point each)

The following data was collected in an experiment similar to the Specific Heat experiment performed in class. Fill in the missing values. (Assume the calorimeter has a calorimeter constant of 0 J/°C)

		Glass
Data	& Calculations	Beads
	mass of glass beads	4.88 g
	mass of water	10.14 g
	initial temperature of water	19.2 °C
	initial temperature of beads	89.2 °C
	final temperature of mixture	24.8 °C
18.	temp change of water (°C)	
18.	temp change of hot beads (°C)	
19.	change in energy of water, q _{water} (J)	
	change in energy of calorimeter (J)	0 J
19.	change in energy of beads, q _{beads} (J)	
20.	specific heat of beads (J·g ^{-1.} °C ⁻¹)	
	accepted value of specific heat	.833
20.	% error	

18.	
18.	
19.	
19.	
20.	
20.	