Name	
------	--

Period ____ Date ___/__/

6 • Energy and Chemical Reactions

- 1. A system has an increase in internal energy, ΔE , of 40 kJ. If 20 kJ of work, w, is done on the system, what is the heat change, q?
 - a) +60 kJ d) -20 kJ
 - b) +40 kJ e) -60 kJ
 - c) +20 kJ
- 2. A gas at 20 atm pressure with a volume of 2.0 Liters expands against a 5 atm pressure to a volume of 8.0 Liters. How much work is done by the gas?
 - a) 30 L·atm c) 8 L·atm b) 18 L·atm d) 5 L·atm
- 3. Which equation represents the heat of formation, ΔH_f , for MgCl₂? a) Mg²⁺(aq) + 2 Cl⁻ \rightarrow MgCl₂(s) b) Mg(s) + 2 Cl(g) \rightarrow MgCl₂(s) c) MgCl₂(s) \rightarrow Mg²⁺(aq) + 2 Cl⁻(aq) d) Mg(s) + Cl₂(g) \rightarrow MgCl₂(s)
- 4. Take a toy balloon. Quickly stretch the balloon and press it against your lower lip. What is the ΔH for the reaction:

unstretched \rightarrow stretched

a) +	c) –
b) 0	d) impossible to tell

5. Which of the following is NOT a state function?

a) pressure	c)	temperature
b) volume	d)	none of these

- b) volume d) none of these

- PRACTICE TEST
- 6. The correct units for specific heat capacity: a) J/°C c) J/g °C b) J/g d) °C/g
- 7. How much heat is required to convert solid sulfur to gaseous sulfur at 298 K and 1 atm pressure? ΔH° (kJ/mol) -395 $S(s) + O_2(g) \rightarrow SO_2(g)$ $S(g) + O_2(g) \rightarrow SO_2(g)$ -618 a) –1013 kJ/mol c) +223 kJ/molb) –223 kJ/mol d) +618 kJ/mol
- 8. Using the ΔH_f° given below, calculate the $\Delta H_{\text{combustion}}$ for propane, C_3H_8 .

	• •
	ΔH_{f}° (kJ/mol)
H ₂ O(l)	-286
$CO_2(g)$	-394
$C_3H_8(g)$	-104
a) 576 kJ	c) -2222 kJ
b) -576 kJ	d) -2330 kJ

9. The heat of vaporization of methane, CH_4 , at its boiling point is 9.20 kJ/mol. How much heat energy is required to vaporize 100. g of methane at its boiling point? × 1000.1 T

a) 1380 kJ	c) 21.6 kJ
b) 86.3 kJ	d) 57.4 kJ

10. How much energy is required to melt 10.0 g benzene, C_6H_6 ? The heat of fusion of benzene is 2.37 kJ/mol.

a) 3.30 kJ	c) 1850 kJ
b) 23.7 kJ	d) 0.303 kJ

- 11. If ΔH for a reaction is positive, ...
 - a) the reaction rate is generally very fast.
 - b) the enthalpy change of the reverse reaction is positive.
 - c) the enthalpy of the products is greater than the enthalpy of the reactants.
 - d) the energy released during bond formation is greater than the energy absorbed during bonding breaking for the reaction.
- 12. Given the two equations:

2 S(s) + 3 O₂(g) \rightarrow 2 SO₃(g) Δ H° = -790.4 kJ SO₂(g) + ¹/₂ O₂(g) \rightarrow SO₃(g) Δ H° = -99.1 kJ

What is the standard enthalpy of formation for sulfur dioxide, $SO_2(g)$?

a) +99.1 kJ	c) -592.2 kJ
b) –296.1 kJ	d) -839.5 kJ

13. When 0.100 g benzoic acid $(HC_6H_4CO_2)$ and excess oxygen is ignited in a bomb calorimeter, the temperature of the water changes from 25.000°C to 25.225°C. The heat capacity of the calorimeter is 603 J/°C. What is the ΔE for this reaction?

a) -597 J	c)	-136 J
b) -1660 J	d)	-149 J

 Under conditions of constant volume, the heat change that occurs during a chemical reaction is equal to

a) ΔH	c)	ΔT
b) ΔE	d)	ΔP

- 15. Systems tend toward:
 - a) maximum entropy and minimum enthalpy
 - b) maximum entropy and maximum enthalpy
 - c) minimum entropy and minimum enthalpy
 - d) minimum entropy and maximum enthalpy

Answers:

1. C	6. C	11. C
2. A	7. C	12. B
3. D	8. C	13. C
4. C	9. D	14. B
5. D	10. D	15. A

Notes:

- an increase in internal energy means an increase in P.E. of system by 40 kJ work done ON system increases P.E., +20 kJ, so q = +20 kJ, too.
- 2. work = $P\Delta V = 5$ atm x (8-2 L)... the 20 atm is not used for anything.
- 4. balloon gets warm, $\Delta H < 0$
- 5. each of these only depends on the STATE of the substance, not on its HISTORY.
- 7. reverse second reaction
- 8. recall: $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$ and use Hess's Law
- 9. Given: 100g CH₄, use molar mass & H_{vap} as conversion factors.
- 10. Given: $10.0g C_6H_6$, use molar mass & Hfus as conversion factors.
- 11. this is an "uphill" reaction.
- 12. take half of first equation, reverse second equation. if you reverse and double second equation, you get TWICE the answer.
- answer = heat capacity x ΔT... you don't use
 0.100 g anywhere. You would IF the question asked for MOLAR heat of combustion.
- 14. if volume is constant, $P\Delta V$ work = 0 so ΔE =q + w becomes ΔE = q.
- 15. from lecture... THIS chapter, however, concentrates on enthalpy, ΔH .