The Chemistry of Acids & Bases

310	DI LISI From Paul Groves
Brønsted-Lowry Acids	pH, pOH, [H⁺], and [OH⁻]
I can	\square write the equation for the autoionization of H ₂ O
☐ recognize common acids and bases. ☐ write balanced equations for their ionization in	recognize that every aqueous solution contains both [H ⁺] ions and [OH ⁻] ions.
water. demonstrate that H ₂ O can sometimes be	write the K_w expression for H_2O and know the value of $K_w = [H^+][OH^-] = 1 \times 10^{-14}$ @ 25°C.
included as a reactant in ionization equations.	use K_w to calculate $[H^+]$ and $[OH^-]$.
recognize when a substance can be amphoteric.	\square state that pH = -log[H ⁺] and pOH = -log[OH ⁻]
explain that a Brønsted base (proton acceptor) needs a lone pair while a Brønsted acid (proton donor) requires a proton (H atom) to donate.	recognize that the [H ⁺] of a strong acid solution comes from the concentration of the acid but the [H ⁺] of a weak acid solution requires an
state the definition of Brønsted acid and base.	equilibrium calculation.
recognize a Brønsted acid and base in a reaction	\square calculate [H ⁺] as 10^{-pH}
and identify its conjugate.	determine the number of significant figures in a pH calculation.
Strengths of Acids & Bases	1
use Tables 17.3 and 17.4 to decide on the	Equilibrium Calculations
relative strengths of acids and bases. Replain the relative strengths of oxoacids such	write the K _a and K _b expressions for weak acids and bases.
as HOCl, HOBr, and HOI as HOCl, HClO ₂ , HClO ₃ , and HClO ₄	solve "ice box" problems for acid and base equilibria.
explain the relative strengths of acids such as HF, HCl, HBr, and HI or H ₂ O, H ₂ S, H ₂ Se, and H ₂ Te	correctly use the "x is small enough to ignore" approximation.
recognize that a very strong acid has a weak conjugate base and a very weak acid has a strong conjugate base.	know when to use the short cut for K_a problems $x = \sqrt{K_a \times [HA]_i}$ where $HA =$ generalized acid (this also applies to K_b problems)
recognize that a weak acid may have a weak conjugate base.	Hydrolysis
compare the conjugate bases of two acids with known relative strengths.	state that salts (ionic compounds) can make a solution acidic, basic, or have no effect on the
state that an acid-base equilibrium favors the weak acid and weak base:	pH. write the ionization equations for the conjugate base of a weak acid, A⁻ + H₂O ≒ HA + OH⁻
$NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$	\Box determine the K_b of a conjugate base from the
explain the above situation in terms of the	K_a of its acid knowing $K_a \cdot K_b = K_w$
strong donor having donated and the strong acceptor having accepted.	Lacalculate the pH of a salt solution that contains the conjugate base of a weak acid or the
☐ know the strong acids and bases.	conjugate acid of a weak base.

What Can Be Acids?

- There are a few neutral molecules that are strong acids, HCl, HBr, HI, HNO₃, H₂SO₄, HClO₃ & HClO₄ that dissociate 100% in water.
- Neutral molecules that are weak acids include molecules such as HF, H₂S, and oxoacids that are not listed above (H₂SO₃, HNO₂, H₂CO₃, etc.), and many organic acids, HC₂H₃O₂, HCOOH, etc.
- Cations (positive ions) can be acids, such as NH₄⁺, but metal ions can also make solutions acidic especially if they have 2+ or 3+ charges. They are surrounded by H₂O in solution and polarize the H-O bond enough that some of the H atoms leave. (Ex: Cu²⁺, Al³⁺, and Fe³⁺) Fe(H₂O)₆³⁺ + H₂O \rightleftharpoons H₃O⁺ + Fe(H₂O)₅OH²⁺

Anions (negative ions) can also be acids. If an anion still has a H atom, it can donate it.

Common examples are bicarbonate ion, HCO₃⁻ and dihydrogen phosphate ion, H₂PO₄⁻, which acts as the acid in baking soda.

Diprotic Acids

write the two acid ionization steps for any diprotic acid.

Example: $H_2S + H_2O \leftrightarrows H_3O^+ + HS^-$

$$K_{a1} = \frac{\begin{bmatrix} H_{3}O^{+} & H_{2}O & \leftrightarrows & H_{3}O^{+} + S^{2-} \\ H_{3}O^{+} & H_{3}O^{-} & K_{a2} & = & \begin{bmatrix} H_{3}O^{+} & S^{2-} \\ H_{3}O^{-} & K_{a2} & \end{bmatrix} \end{bmatrix}}{\begin{bmatrix} H_{2}S \end{bmatrix}}$$

$$K_{a1} = 1 \times 10^{-7} \qquad K_{a2} = 1 \times 10^{-19}$$

- \square state that the first ionization constant, K_{a1} , is always larger than the second constant, K_{a2} .
- state that the only strong diprotic acid, H_2SO_4 , is only strong for the first ionization. $K_{a2} = 1.2 \times 10^{-2}$.

explain that when calculating the pH of a diprotic acid, only the first ionization needs to be considered.

$$H_2S + H_2O \leftrightarrows_{H_3O^+ + HS^-}$$

$$HS^- + H_2O \implies H_3O^+ + S^{2-}$$

The [H₃O⁺] from the first ionization is small. The [H₃O⁺] from the second ionization is *very* small and made even smaller by the presence of H₃O⁺ from the first ionization (Le Châtelier's Principle).

Bottom Line: treat the acid as monoprotic and use K_{al} as the K_a .

state that $[S^{2-}] = K_{a2}$. explain this fact by using information from the previous situation. Because of the first ionization:

$$H_2S + H_2O = H_3O^+ + HS^-$$

The changes caused to these two concentrations by the second ionization are small (and made negligible by Le Châtelier's Principle.)

So,
$$K_{a2} = \frac{[H_3O^+][S^{2-}]}{[HS^-]}$$
 becomes $K_{a2} = [S^{2-}]!$

 \square combine the two ionization steps and combine the two K_a 's.

$$H_2S + 2 H_2O \leftrightarrows 2 H_3O^+ + S^{2-}$$

 $K_a = K_{a1} \cdot K_{a2} = 1 \times 10^{-26}$

use this equation and K_a when a problem is given in which the pH is adjusted to a known value by the addition of another acid.

Example from the Ch 17 Practice Test:

13. What is the S^{2-} concentration in a saturated solution (0.10 \underline{M}) of H_2S , in which the pH has been adjusted to 6.00 by the addition of HCl? For H_2S , $K_{a1} = 1.1 \times 10^{-7}$ and $K_{a2} = 1.0 \times 10^{-19}$.