Chapter 13 AP Chem Acid/Base Review

1. Strong acid/base: Easy Peasy☺!

A. Strong acids 100% ionize in water, so $[H^+]=[H_3O^+]=[HA]$. <u>0.25 M HCl</u> has 0.25 M $[H^+]=0.25$ and $pH = -log[H^+]=-log(0.25) = 0.60 = pH$

B. Strong bases 100% dissociate (already ionic) <u>0.25 M NaOH</u>, $[OH^-] = 0.25$ and $pOH= -\log(OH) = -\log(0.25) = 0.60$, $pH = 14 - pOH= \underline{13.40 = pH}$

<u>0.25 M Ca(OH)₂</u>, remember $[OH^-] = 2x = 0.50$, pOH=0.30 and <u>pH = 13.70</u>

2. Weak acid/base, little more challenging...require a K_a or K_b expression. Weak acids and bases ionize water way less than 100% (about 1% or less, maybe up to 5% for the best ionizers like HF) HF $K_a = 7.2 \times 10^{-4}$, CH₃COOH $K_a = 1.8 \times 10^{-5}$ NH₃ $K_b = 1.8 \times 10^{-5}$

A. Weak acids in general, $HA + H_2O \leftrightarrow H_3O^+ + A^-$ and $K_a = \frac{[H_3O^+][A^-]}{[HA]}$

So 0.25 M CH₃COOH

First, do a RICE table for the equilibrium:

R	HA +	$H_2O \leftrightarrow$	$H_{3}O^{+} +$	A ⁻
Ι	0.25		0	0
С	-X		$+_{\rm X}$	$+_{\mathbf{X}}$
Е	0.25-x		Х	Х

and $K_a = \frac{[H_3O^+][A^-]}{[HA]} = \frac{[x][x]}{[0.25-x]} = 1.8x10^{-5}$, and x = 0.00212 so pH=-log[H₃O⁺] = -log[0.00212] = <u>2.7 = pH for 0.25 M CH₃COOH</u> which is not as acidic as strong acid (0.25M strong HCl has pH = 0.6)

B. Weak base in general $B + H_2O \leftrightarrow HB^+ + OH^-$ and $K_b = \frac{[HB^+][OH^-]}{[B]}$

So 0.25 M NH₃ First, do a RICE table for the equilibrium:

0.25-x

R	$NH_3 +$	$H_2O \leftrightarrow$	$NH_{4}^{+} +$	OH-
Ι	0.25		0	0
С	- V		$+\mathbf{v}$	$+\mathbf{v}$

and $K_b = \frac{[HB^+][OH^-]}{[B]} = \frac{[x][x]}{[0.25-x]} = 1.8x10^{-5}$ so x = 0.00212

and pOH = -log(0.00212) = 2.7, and pH = 14-pOH = 14-2.7= 11.3 = pH for 0.25 M

Next page, salts of weak acids/bases and buffers, half neutralizations....

Chapter 13 AP Chem Acid/Base Review

3. Salt of weak acid/base. How do you know?

NaCl is the product of a strong acid/strong base, so it is neutral (HCl + NaOH \rightarrow NaCl + H₂O). If you have a weak acid/strong base, there will be a conjugate base! For example, HF + NaOH \rightarrow NaF + H₂O but F⁻ is the "strong" conjugate base of a weak acid! Now what?!? K_a K_b = K_w so for HF with K_a=7.2x10⁻⁴, the K_b of F⁻ is K_w / K_a then do RICE table:

A. 0.25 M NaF will be basic, but not as basic as 0.25 M NaOH (pH=13.4 STRONG base) and not as basic as 0.25 M NH₃ (pH=11.3 weak base) K_b of F⁻ is $K_w / K_a = 1.0x10^{-14} / 7.2x10^{-4} = 1.39x10^{-11}$ F⁻ + H₂O \leftrightarrow HF + OH⁻ and $K_b = [HF][OH⁻] / [F⁻] = x² / (0.25-x) = 1.39x10^{-11}$ Solved x = 1.86x10⁻⁶ =[OH] so pOH = 5.7 and pH = 8.3 (compared to 13.4 and 11.3)

4. Buffer!

Mix a weak acid and a salt (of that acid) or a weak base/salt. This time the RICE table 'I' values are not zero.

R	HF +	$H_2O \leftrightarrow$	$H_{3}O^{+} +$	F-
Ι	0.25		0	0.1
С	-X		$+_{\rm X}$	0.1+x
Е	0.25-x		Х	0.1+x
approx.	0.25		Х	0.1

0.25 M HF and 0.1 M NaF. A buffer is a mixture of acid/salt.

And since X is small, use the approximations so $K_a = 0.1x / 0.25$ (too bad we can't use solver on UIL, but you can on AP!)

 $x=K_a*0.25/0.1 = 1.8x10^{-3} = H_3O^+$ so $pH = -log(1.8x10^{-3}) = pH = 2.7$

5. Half-titration of weak acid / strong base (or strong acid/weak base).

At the halfway point, the acid is half gone and the salt is half produced--so it is a buffer! So for 50 mL of 0.25 M HF and 25 mL of 0.25 M NaOH, half the acid is neutralized, making half of the salt (NaF). So 6.25 mmol HF left and 6.25 mmol NaF produced in 75 mL, so [HF]=[F⁻]=0.0833

 $K_a = 0.0833 \text{ x} / 0.0833$ (who cares what the [HF]=[F⁻] could be, they cancel!)

So Ka = x and pH = pKa, so pH = $-\log(7.2 \times 10^{-4}) = pH = 3.14$ (compared to #4 pH=2.7)