17 • Acid-Base Equilibrium

Name				
Period	Date	/	/	

PRACTICE FRQ

The overall dissociation of oxalic acid, $H_2C_2O_4$, is represented below. The overall dissociation constant is also indicated.

 $H_2C_2O_4 \rightleftharpoons 2 H^+ + C_2O_4^{2-}$ $K = 3.78 \times 10^{-6}$

- (a) What volume of 0.400-molar NaOH is required to neutralize completely a 5.00×10^{-3} mole sample of pure oxalic acid?
- (b) Give the equations representing the first and second dissociations of oxalic acid.

Calculate the value of the first dissociation constant, K_1 , for oxalic acid if the value of the second dissociation constant, K_2 , is 6.40 x 10⁻⁵.

(c) To a 0.015-molar solution of oxalic acid, a strong acid is added until the pH is 0.5. Calculate the $[C_2O_4^{2-}]$ in the resulting solution. (Assume the change in volume is negligible.)

(d) Calculate the value of the equilibrium constant, K_b , for the reaction that occurs when solid Na₂C₂O₄ is dissolved in water.

Answer:

(a)
$$5.00 \times 10^{3} \text{ mol oxalic acid } x^{\frac{2 \text{ mol H}^{+}}{1 \text{ mol oxalic acid}}} x^{\frac{1 \text{ mol OH}}{1 \text{ mol H}^{+}}} x^{\frac{1000. \text{ mL NaOH}}{0.400 \text{ mol NaOH}} = 25.0 \text{ mL NaOH}$$

(b) $H_{2}C_{2}O_{4} \ll H^{+} + HC_{2}O_{4}^{-1}$
 $HC_{2}O_{4}^{-1} \ll H^{+} + C_{2}O_{4}^{2-1}$
 $K = K_{1} \times K_{2}$
(c) $X = \text{amt. ionized}$
 $[H_{2}C_{2}O_{4}] = 0.015 \cdot X$
 $[H^{+}] = 10^{0^{H}} = 10^{0.5} = 0.316 M$
 $[C_{2}O_{4}^{-2}] = X$
 $K_{a} = \frac{[H^{++}]^{2}[C_{2}O_{4}]}{[H_{2}C_{2}O_{4}]} = 3.78 \times 10^{-6}$
 $3.78 \times 10^{-6} = \frac{[0.316]^{-2}[X]}{[0.015 - X]}; X = 5.67 \times 10^{-7} M$
(d) $K_{b} = \frac{K_{w}}{K_{2}} = \frac{1 \infty 10^{14}}{6.40 \times 10^{-6}} = 1.56 \times 10^{-10}$