18 • Acid-Base Equilibria

Name _		
Period _	Date _	//

PRACTICE FRQ

CLEARLY SHOW THE METHOD USED AND THE STEPS INVOLVED IN ARRIVING AT YOUR ANSWERS. It is to your advantage to do this, since you may obtain partial credit if you do and you will receive little or no credit if you do not. Attention should be paid to significant figures.

 $\mathrm{HC}_{3}\mathrm{H}_{5}\mathrm{O}_{2}(aq) \longleftrightarrow \mathrm{C}_{3}\mathrm{H}_{5}\mathrm{O}_{2}^{-}(aq) + \mathrm{H}^{+}(aq) \qquad \qquad K_{a} = 1.34 \times 10^{-5}$

Propanoic acid, HC₃H₅O₂, ionizes in water according to the equation above.

(a) Write the equilibrium constant expression for the reaction.

(b) Calculate the pH of a 0.265 *M* solution of propanoic acid.

- (c) A 0.496 g sample of sodium propanoate, NaC₃H₅O₂, is added to a 50.0 mL sample of a 0.265 M solution of propanoic acid. Assuming that no change in the volume of the solution occurs, calculate each of the following.
 - (i) The concentration of the propanoate ion, $C_3H_5O_2^{-}(aq)$ in the solution

(ii) The concentration of the $H^+(aq)$ ion in the solution.

The methanoate ion, $HCO_2^{-}(aq)$ reacts with water to form methanoic acid and hydroxide ion, as shown in the following equation.

$$\mathrm{HCO}_{2^{-}(aq)} + \mathrm{H}_{2}\mathrm{O}\left(l\right) \leftrightarrow \mathrm{H}_{2}\mathrm{CO}_{2}(aq) + \mathrm{OH}^{-}(aq)$$

- (d) Given that $[OH^-]$ is $4.18 \times 10^{-6} M$ in a 0.309 M solution of sodium methanoate, calculate each of the following.
 - (i) The value of K_b for the methanoate ion, HCO₂^{-(aq)}

(ii) The value of K_a for methanoic acid, HCO₂H

(e) Which acid is stronger, propanoic acid or methanoic acid? Justify your answer.