17 • Acid-Base Equilibria

- 1. In the equation,
 - $HCN(aq) + H_2O \leftrightarrows H_3O^+(aq) + CN^-(aq)$
 - a) H₃O⁺ is an acid and H₂O is its conjugate base.
 - b) HCN is an acid and CN⁻ is its conjugate base.
 - c) HCN is an acid and H₂O is its conjugate base.
 - d) HCN is a base and H_2O is its conjugate acid.
 - e) Both HCN and CN^{-} can function as acids.
- 2. Which of the following would not be expected to function as a Brønsted-Lowry base?

a) NH ₃	d)	H_2O
b) NH ₄ ⁺	e)	OH
c) O ²⁻		

- 3. All of the following are acid-base conjugate pairs EXCEPT
 - a) NH₃ and NH₂⁻.
 b) OH⁻ and O²⁻.
 c) NH₄⁺ and NH₃.
 d) HCN and HOCN.
 e) H₃PO₄ and H₂PO₄⁻.
- 4. Which is the strongest acid?
 - a) Ascorbic acid, $K_a = 8.0 \times 10^{-5}$
 - b) Benzoic acid, $K_a = 6.5 \times 10^{-5}$
 - c) 3-chlorobenzoic acid, $K_a = 1.5 \times 10^{-4}$
 - d) 2-hydroxybenzoic acid, $K_a = 1.1 \times 10^{-3}$
 - e) Chloroacetic acid, $K_a = 1.4 \times 10^{-3}$
- 5. Which of the following is a weak electrolyte in aqueous solution?

a) H ₂ CO ₃	d)	HNO_3
b) H ₂ SO ₄	e)	HClO ₃
c) HI		

Name			
Period	Date _	/	_/

PRACTICE TEST

- 6. What is the pH of a 4.2×10^{-4} M HBr solution?
 - a) 2.80
 b) 3.38
 c) 3.80
 d) 4.20
 e) 4.62
- 7. The conjugate base of H_2O is
 - a) H^+ d) HOH b) H_3O^+ e) $OH^$ c) O^{2^-}

8. The hydronium ion concentration of a solution is 1.34×10^{-4} <u>M</u>. The pH of the solution is

- a) 3.00 d) 4.00 b) 3.40 e) 4.13 c) 3.87
- 9. A solution which has a pH of 12.8 would be described as
 - a) very acidicb) slightly acidicc) neutrald) slightly basice) very basic
- 10. Given that K_a for HNO₂ is 5.0 x 10⁻⁴, calculate the equilibrium constant for the reaction NO₂^{-(aq)} + H₂O ⇒ HNO₂(aq) + OH^{-(aq)} a) 2.0 x 10⁻¹¹ d) 2.0 x 10³ b) 2.0 x 10⁻⁴ e) 5.0 x 10¹⁰ c) 5.0 x 10⁻⁴
- Under the Lewis concept of acids and bases, a base is
 - a) a proton donor.
 - b) a proton acceptor.
 - c) an electron pair acceptor.
 - d) an electron pair donor.
 - e) a hydroxide ion donor.

12. Knowing that H₂S is a stronger acid than HCN, determine, if possible, in which direction the following equilibrium lies.

 $HCN(aq) + HS^{-}(aq) = CN^{-}(aq) + H_2S(aq)$

- a) equilibrium lies to the left (reactant-favored)
- b) equilibrium lies to the right (product-favored)
- c) equilibrium is perfectly balanced left & right
- d) can be determined if the relative acidity of HS- is given
- e) cannot be determined
- 13. A 0.20 M solution of an acid, HA, has a pH of 3.82 at 25°C. What is the K_a for this acid?
 - a) 7.6×10^{-4} b) 4.5×10^{-5} c) 4.5×10^{-9} d) 2.3×10^{-8} e) 4.5×10^{-9}
 - c) 1.1×10^{-7}
- 14. Hydrogen sulfide is a weak diprotic acid. What is the pH of a 0.10 M H₂S solution? $(K_{a1} = 1.0 \text{ x } 10^{-7} \text{ and } K_{a2} = 1.3 \text{ x } 10^{-13})$ a) 1.0 d) 5.5 b) 3.5 e) 10.4
 - c) 4.0
- 15. Consider the following acids:

HClO₃, HClO₄, HIO₃, HIO₂

When listed from **weakest** to **strongest**, the order would be:

- a) $HIO_2 < HIO_3 < HClO_3 < HClO_4$
- b) $HClO_4 < HClO_3 < HIO_3 < HIO_2$
- c) $HIO_2 < HClO_3 < HIO_3 < HClO_4$
- d) $HClO_3 < HClO_4 < HIO_2 < HIO_3$
- e) $HIO_3 < HIO_2 < HClO_4 < HClO_3$
- Calculate the dissociation constant, K_a, of an acid if a 1.00 <u>M</u> solution of the acid has a pH of 3.18.
 - a) $4.4 \ge 10^{-7}$ b) $4.4 \ge 10^{-6}$ c) $6.6 \ge 10^{-4}$ d) $6.6 \ge 10^{-3}$ e) $3.2 \ge 10^{-3}$

- 17. What is the pH of a 0.054 M NaOH solution?
 - a) 1.14 d) 12.73
 - b) 1.27 e) 13.95
 - c) 8.64
- 18. What is the pH of a 0.144 M solution of NaF? K_a for HF = 7.1 x 10⁻⁴
 - a) 5.85 d) 8.15
 - b) 7.00 e) 9.12
 - c) 7.15
- 19. Of the following salts, which one forms a 0.1 M solution with the lowest pH?
 - a) NH₄Cl d) NaNO₂
 - b) $KC_2H_3O_2$ e) NaCl
 - c) KBr

20. What is the pH of 0.200 M HCN

- $(K_a = 4.0 \times 10^{-10})?$ a) 4.70d) 5.70b) 5.05e) 10.10c) 5.20
- 21. Which one of the following salts when added to pure water will not change the pH?
 - a) NaHCO₃
 b) NaHSO₄
 c) NaCN
 d) NH₄NO₃
 d) NH₄NO₃
 e) NaBr

22. Hydrogen sulfide is a weak diprotic acid. What is the [S²⁻] in a 0.10 M H₂S solution? (K_{a1} = 1.0 x 10⁻⁷ and K_{a2} = 1.3 x 10⁻¹³) a) 1.0 x 10⁻⁵ d) 1.3 x 10⁻¹⁴ b) 1.0 x 10⁻⁷ e) 1.3 x 10⁻²⁰ c) 1.3 x 10⁻¹³

