17 • The Chemistry of Acids & Bases

STUDY QUESTIONS & PROBLEMS

- 1. For the following aqueous equilibria, designate the Brønsted-Lowry conjugate acid-base pairs and establish the weaker side:
 - a. $NH_3(aq) + H_2O(l) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$
 - b. $HCN(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + CN^-(aq)$
 - c. $NH_4^+(aq) + CO_3^{2-}(aq) \rightleftharpoons NH_3(aq) + HCO_3^-(aq)$
- 2. Write the name and formula for the conjugate bases of the following:
 - a. HNO₂
 - b. H_2SO_4
 - c. $H_2PO_4^-$
 - d. HF
 - e. CH₃CO₂H
- 3. Complete the Brønsted-Lowry equilibria, label the components acid or base, and pair up the conjugate acid-base pairs:
 - a. $HSO_4^- + H_2O \rightleftharpoons$
 - b. $NH_3 + H_2O \rightleftharpoons$
 - c. $CN^- + H_2O \rightleftharpoons$
 - d. $H^- + H_2O \rightleftharpoons$
 - e. $HClO_4 + H_2O \rightleftharpoons$
- 4. Is the monohydrogenphosphate ion HPO₄²⁻ amphiprotic? If so, write the formulas of its conjugate acid and its conjugate base.
- 5. Of the following acids, determine
 - a. The strongest acid
 - b. The acid that produces the lowest concentration of hydronium ions per mole of acid
 - c. The acid with the strongest conjugate base
 - d. The diprotic acid
 - e. The strong acid
 - f. The acid with the weakest conjugate base

$$\begin{array}{lll} \text{HNO}_{3}(\text{aq}) + \text{H}_{2}\text{O}(\text{l}) & \rightleftharpoons \text{H}_{3}\text{O}^{+}(\text{aq}) + \text{NO}_{3}^{-}(\text{aq}) & \text{K}_{a} = \text{very large} \\ \text{HSO}_{4}^{-}(\text{aq}) + \text{H}_{2}\text{O}(\text{l}) & \rightleftharpoons \text{H}_{3}\text{O}^{+}(\text{aq}) + \text{SO}_{4}^{2-}(\text{aq}) & \text{K}_{a} = 1.2 \text{ x } 10^{-2} \\ \text{HCN}(\text{aq}) + \text{H}_{2}\text{O}(\text{l}) & \rightleftharpoons \text{H}_{3}\text{O}^{+}(\text{aq}) + \text{CN}^{-}(\text{aq}) & \text{K}_{a} = 4.0 \text{ x } 10^{-10} \\ \text{H}_{2}\text{CO}_{3}(\text{aq}) + \text{H}_{2}\text{O}(\text{l}) & \rightleftharpoons \text{H}_{3}\text{O}^{+}(\text{aq}) + \text{HCO}_{3}^{-}(\text{aq}) & \text{K}_{a} = 4.2 \text{ x } 10^{-7} \\ \text{NH}_{4}^{+}(\text{aq}) + \text{H}_{2}\text{O}(\text{l}) & \rightleftharpoons \text{H}_{3}\text{O}^{+}(\text{aq}) + \text{NH}_{3}(\text{aq}) & \text{K}_{a} = 5.6 \text{ x } 10^{-10} \\ \text{HF}(\text{aq}) + \text{H}_{2}\text{O}(\text{l}) & \rightleftharpoons \text{H}_{3}\text{O}^{+}(\text{aq}) + \text{F}^{-}(\text{aq}) & \text{K}_{a} = 7.2 \text{ x } 10^{-4} \\ \end{array}$$

- 6. Write net ionic acid-base reactions for:
 - a. The reaction of acetic acid with aqueous ammonia solution
 - b. The reaction of hydrofluoric acid with sodium hydroxide
 - c. The reaction of ammonium chloride with potassium hydroxide
 - d. The reaction of sodium bicarbonate with sulfuric acid
 - e. The reaction of chlorous acid with aqueous ammonia solution
 - f. The reaction of disodium hydrogen phosphate with acetic acid
- 7. What is the pH of
 - a. 0.0010 M HCl solution?
 - b. 0.15 M KOH solution?
 - c. 10^{-8} M HNO₃ solution?
- 8. List the following substances in order of increasing acid strength: (*Look up the K_a's pg 799*) H_2O , H_2SO_3 , HCN, $H_2PO_4^-$, NH_4^+ , $[Cu(H_2O)_6]^{2+}$, NH_3 , H_3O^+ , HCO_2H , HCI.
- 9. Complete the table for each aqueous solution at 25°C.

State whether the solutions are acidic or basic.

$[\mathrm{H_3O}^+]$	[OH ⁻]	pН	рОН	acidic or basic
2.0×10^{-5}				
		6.25		
	5.6×10^{-2}			
			9.20	
8.7×10^{-10}				

- 10. What is the pH of a solution that contains 2.60 grams of NaOH in 250 mL of aqueous solution?
- 11. If the pH of a sample of rainwater is 4.62, what is the hydronium ion concentration [H₃O⁺] and the hydroxide ion concentration [OH⁻] in the rainwater?
- 12. A 0.12 M solution of an unknown weak acid has a pH of 4.26 at 25°C. What is the hydronium ion concentration in the solution and what is the value of its K_a?
- 13. Hydroxylamine is a weak base with a $K_b = 6.6 \times 10^{-9}$. What is the pH of a 0.36 M solution of hydroxylamine in water at 25°C?
- 14. Suppose you dissolved benzoic acid in water to make a 0.15 M solution.

What is:

- a. the concentration of benzoic acid?
- b. the concentration of hydronium ion?
- c. the concentration of benzoate anion?
- d. the pH of the solution?

 K_a for benzoic acid = 6.3 x 10^{-5} at 25° C

- 15. Which of the following salts, when dissolved in water to produce 0.10 M solutions, would have the lowest pH?
 - a. sodium acetate

d. magnesium nitrate

b. potassium chloride

e. potassium cyanide

- c. sodium bisulfate
- 16. For each of the following salts, predict whether an aqueous solution would be acidic, basic, or neutral.
 - a. sodium nitrate NaNO₃
 - b. ammonium iodide NH₄I
 - c. sodium bicarbonate NaHCO₃
 - d. ammonium cyanide NH₄CN
 - e. sodium hypochlorite NaOCl
 - f. potassium acetate KCH₃CO₂
- 17. a. Cyanic acid HOCN has a $K_a = 3.5 \times 10^{-4}$, what is the K_b for the cyanate ion OCN⁻?
 - b. Phenol is a relatively weak acid, $K_a = 1.3 \times 10^{-10}$. How does the strength of its conjugate base compare with the strength of ammonia, the acetate ion, and sodium hydroxide?
- 18. a. What is the pH of a 0.80 M solution of sulfurous acid?
 - b. What is the concentration of sulfite ion in a 0.80 M solution of sulfurous acid?
 - c. What happens to the concentration of sulfite ion SO_3^{2-} if the concentration of sulfurous acid is halved?
- 19. Identify the Lewis acid and the Lewis base in the following reactions:
 - a. Boron trichloride reacts with chloride ion to produce [BCl₄]
 - b. Nickel reacts with carbon monoxide to produce nickel tetracarbonyl [Ni(CO)₄].
 - c. Ammonia reacts with acetic acid to produce ammonium acetate.
 - d. Sodium ions are solvated by water to produce Na⁺(aq)
- 20. Calculate the pH of a 0.35 M solution of potassium cyanide. K_a for HCN = 4.0×10^{-10} .

Note: Question #20.

In the answers, the authors forgot to change the K_{a} into the K_{b} .

The K_b should be 2.5 x 10^{-5} . The "x" = $[OH^-]$ = .002958; pOH = 2.53; pH = 11.47