Chapter 17 – Practice Problems with Buffers - ANSWERS

1. (a)
$$K_a = \frac{[H^+][OC1^-]}{[HOC1]} = \frac{(x)(x)}{(0.025 M)} = 3.0 \times 10^{-8}$$

$$x^2 = 7.5 \times 10^{-10}$$

$$x = [H^+] = 2.7 \times 10^{-5} M$$

(b)
$$pH = -log(2.7 \times 10^{-5}) = 4.57$$

(c) % ionization of HOCl =
$$\frac{[H^+]}{[HOCl]} \times 100\% = \frac{2.7 \times 10^{-5}}{0.025} \times 100\% = 0.11\%$$

- 2. (a) The presence of additional OCl⁻ ions causes the equilibrium position to shift toward the **reactants**.
 - (b) The value of [H⁺] in Solution #2 should be **less than** the value of [H⁺] in Solution #1.
 - (c) The pH of Solution #2 should be greater than the pH of Solution #1.
 - (d) The % ionization of HOCl in Solution #2 should be **less than** the % ionization of HOCl in Solution #1.

3. (a)
$$K_a = \frac{[H^+][OC1^-]}{[HOC1]} = \frac{[H^+](0.015 M)}{(0.025 M)} = 3.0 \times 10^{-8}$$

$$[H^+] = 5.0 \times 10^{-8} M$$

(b)
$$pH = -log(5.0 \times 10^{-8}) = 7.30$$

Alternatively, you could have used the Henderson-Hasselbalch equation as follows.

$$pH = pK_a + \log\left(\frac{[A^-]}{[HA]}\right) = -\log(3.0 \times 10^{-8}) + \log\left(\frac{0.015}{0.025}\right) = 7.52 + \log\left(0.60\right) = 7.52 - 0.22 = 7.30$$

(c) % ionization of HOCl =
$$\frac{[H^+]}{[HOCl]} \times 100\% = \frac{5.0 \times 10^{-8}}{0.025} \times 100\% = 0.0002\%$$

4. Solution B. A mixture of $HNO_2(aq)$ and $NaNO_2(aq)$ is a better buffer because it consists of a weak acid (HNO_2) and its conjugate base (NO_2^-). A buffer solution that contains a weak acid and its conjugate base is able to resist changes in pH because it can neutralize small quantities of strong acid or strong base while still maintaining a ratio of $\frac{[A^-]}{[HA]}$ that is approximately the same value.

On the other hand, Buffer A contains $HNO_3(aq)$, which is a strong acid. $NaNO_3(aq)$ is a neutral salt. This combination would not make a good buffer because it does not consist of a weak acid – conjugate base pair.

5. (a) The value of p K_a for HNO₂ is equal to $-\log(4.5 \times 10^{-4}) = 3.35$

(b)

Solution	Prediction	Justification
a mixture of 1.0 M HNO ₂ and 1.0 M NaNO ₂	$pH = pK_a$	$[HNO_2] = [NO_2^-]$
a mixture of 0.75 M HNO ₂ and 0.55 M NaNO ₂	$pH < pK_a$	$[\mathrm{HNO}_2] > [\mathrm{NO}_2^-]$
a mixture of 0.83 M HNO ₂ and 1.1 M NaNO ₂	$pH > pK_a$	[HNO ₂] < [NO ₂ ⁻]

6. (a)
$$K_a = \frac{[H^+][NO_2^-]}{[HNO_2]} = \frac{[H^+](1.0 M)}{(1.0 M)} = 4.5 \times 10^{-4}$$

$$[H^+] = 4.5 \times 10^{-4} M$$

$$pH = -\log(4.5 \times 10^{-4}) = 3.35$$

Alternatively, you could have used the Henderson-Hasselbalch equation as follows.

pH = p
$$K_a$$
 + log $\left(\frac{[A^-]}{[HA]}\right)$ = -log (4.5×10^{-4}) + log $\left(\frac{1.0}{1.0}\right)$ = 3.35

(b)
$$K_a = \frac{[H^+][NO_2^-]}{[HNO_2]} = \frac{[H^+](0.55 M)}{(0.75 M)} = 4.5 \times 10^{-4}$$

$$[H^+] = (4.5 \times 10^{-4}) \left(\frac{0.75}{0.55}\right) = 6.1 \times 10^{-4} M$$

$$pH = -\log(6.1 \times 10^{-4}) = 3.21$$

Alternatively, you could have used the Henderson-Hasselbalch equation as follows.

pH = p
$$K_a$$
 + log $\left(\frac{[A^-]}{[HA]}\right)$ = -log (4.5×10^{-4}) + log $\left(\frac{0.55}{0.75}\right)$ = 3.35 - 0.13 = 3.22

6. (c)
$$K_a = \frac{[H^+][NO_2^-]}{[HNO_2]} = \frac{[H^+](1.1 M)}{(0.83 M)} = 4.5 \times 10^{-4}$$

$$[H^+] = (4.5 \times 10^{-4}) \left(\frac{0.83}{1.1}\right) = 3.4 \times 10^{-4} M$$

$$pH = -log(3.4 \times 10^{-4}) = 3.47$$

Alternatively, you could have used the Henderson-Hasselbalch equation as follows.

pH = p
$$K_a$$
 + log $\left(\frac{[A^-]}{[HA]}\right)$ = -log (4.5×10^{-4}) + log $\left(\frac{1.1}{0.83}\right)$ = 3.35 + 0.12 = 3.47

7. The value of p K_a for HNO₂ is equal to $-\log(4.5 \times 10^{-4}) = 3.35$

The pH range of an equimolar mixture of HNO₂ and NaNO₂ is between pH **2.35** and pH **4.35**.

8.
$$NO_2^-(aq) + H^+(aq) \rightarrow HNO_2(aq)$$

9.
$$HNO_2(aq) + OH^-(aq) \rightarrow NO_2^-(aq) + H_2O(l)$$

- 10. Buffer X is more resistant to changes in pH when a strong acid or a strong base is added to it because it contains a higher concentration of HNO₂ and NO₂⁻ to react with added H⁺ or OH⁻ ions.
- 11. The volume of 1.0 M NaOH needed is equal to 50.0 mL.

Moles of HNO₂ =
$$0.100 \text{ L} \times \frac{1.0 \text{ mol HNO}_2}{\text{L}} = 0.10 \text{ mol HNO}_2$$

Moles of NaOH needed to react with HALF of the $HNO_2 = 0.05$ mol NaOH

When half of the HNO₂ is converted to the conjugate base, $[HNO_2] = [NO_2^-]$, and the pH of the solution is equal to the p K_a of the weak acid, which is 3.35.

Another way to demonstrate this is

pH = p
$$K_a$$
 + log $\left(\frac{[NO_2^-]}{[HNO_2]}\right)$ and pH = p K_a when $[HNO_2]$ = $[NO_2^-]$

12. (a) $pH = pK_a = -\log(1.5 \times 10^{-5}) = 4.82$

(b) $pH = pK_a = -\log(6.2 \times 10^{-8}) = 7.21$

(c) $pH = pK_a = -\log(5.6 \times 10^{-10}) = 9.25$

13.

Buffer Solution	Particulate Diagram of the Buffer Solution	Prediction	Justification
#1		pH < 3.17	[HF] > [F ⁻]
#2		pH = 3.17	[HF] = [F ⁻]
#3		pH > 3.17	[HF] < [F ⁻]