1.

Solid	Balanced Equation	K_{sp}
barium carbonate	$BaCO_3(s) \leftrightarrows Ba^{2+}(aq) + CO_3^{2-}(aq)$	$K_{sp} = [Ba^{2+}][CO_3^{2-}]$
calcium chromate	$CaCrO_4(s) \leftrightarrows Ca^{2+}(aq) + CrO_4^{2-}(aq)$	$K_{sp} = [Ca^{2+}][CrO_4^{2-}]$
silver sulfate	$Ag_2SO_4(s) \leftrightarrows 2 Ag^+(aq) + SO_4^{2-}(aq)$	$K_{sp} = [Ag^+]^2 [SO_4^{2-}]$
magnesium hydroxide	$Mg(OH)_2(s) \leftrightarrows Mg^{2+}(aq) + 2 OH^{-}(aq)$	$K_{sp} = [Mg^{2+}][OH^{-}]^2$

2.

Name	Molar Mass (g/mol)	Solubility of the Solid Compound (g/L)	Cation concentration in a saturated solution (<i>M</i>)	Anion concentration in a saturated solution (<i>M</i>)
barium carbonate	197.34	0.014	$[Ba^{2+}] = 7.1 \times 10^{-5}$	$[\text{CO}_3{}^{2-}] = 7.1 \times 10^{-5}$
calcium chromate	156.08	0.010	$[Ca^{2+}] = 6.4 \times 10^{-5}$	$[CrO_4^{2-}] = 6.4 \times 10^{-5}$
silver sulfate	311.80	4.8	$[Ag^+] = 0.030$	$[SO_4^{2-}] = 0.015$
magnesium hydroxide	58.32	0.0096	$[Mg^{2+}] = 1.6 \times 10^{-4}$	$[OH^{-}] = 3.2 \times 10^{-4}$

3.

Name	Calculated value of <i>K</i> _{sp}	
barium carbonate	$(7.1 \times 10^{-5})(7.1 \times 10^{-5}) = 5.0 \times 10^{-9}$	
calcium chromate	$(6.4 \times 10^{-5})(6.4 \times 10^{-5}) = 4.1 \times 10^{-9}$	
silver sulfate	$(0.030)^2(0.015) = 1.4 \times 10^{-5}$	
magnesium hydroxide	$(1.6 \times 10^{-4})(3.2 \times 10^{-4})^2 = 1.6 \times 10^{-11}$	

Name	Formula	K_{sp}	Cation concentration in a saturated solution (<i>M</i>)	Anion concentration in a saturated solution (<i>M</i>)
barium carbonate	BaCO ₃	$5.0 imes10^{-9}$	$[Ba^{2+}] = 7.1 \times 10^{-5}$	$[\text{CO}_3{}^{2\text{-}}] = 7.1 \times 10^{-5}$
calcium sulfate	CaSO ₄	$2.4 imes 10^{-5}$	$[Ca^{2+}] = 4.9 \times 10^{-3}$	$[SO_4^{2-}] = 4.9 \times 10^{-3}$
silver carbonate	Ag ₂ CO ₃	$8.1 imes 10^{-12}$	$[Ag^+] = 2.6 \times 10^{-4}$	$[\mathrm{CO}_3^{2-}] = 1.3 \times 10^{-4}$
zinc hydroxide	Zn(OH) ₂	$3.0 imes 10^{-16}$	$[Zn^{2+}] = 4.2 \times 10^{-6}$	$[OH^{-}] = 8.4 \times 10^{-6}$

5.

Formula	Equation that shows why the solid is more soluble in an acidic solution		
PbF ₂	$PbF_2 + 2 H^+ \leftrightarrows Pb^{2+} + 2 HF$		
Ni(OH) ₂	$Ni(OH)_2 + 2 H^+ \leftrightarrows Ni^{2+} + 2 H_2O$		
CaCO ₃	$CaCO_3 + 2 H^+ \leftrightarrows Ca^{2+} + H_2O + CO_2$		
CuS	$CuS + 2H^+ \hookrightarrow Cu^{2+} + H_2S$		

6.

(a) $M_1V_1 = M_2V_2$ $M_1V_1 = M_2V_2$ $(5.0 \times 10^{-4} M)(50.0 \text{ mL}) = (M_2)(100.0 \text{ mL})$ $(3.0 \times 10^{-3} M)(50.0 \text{ mL}) = (M_2)(100.0 \text{ mL})$ $[\text{Ca}^{2+}] = 2.5 \times 10^{-4} M$ $[\text{F}^-] = 1.5 \times 10^{-3} M$

(b) $Q = [Ca^{2+}][F^{-}]^2 = (2.5 \times 10^{-4})(1.5 \times 10^{-3})^2 = 5.6 \times 10^{-10}$

(c) A precipitate of CaF₂ will form in the beaker because the value of Q is more than the value of K_{sp} .