- 1. For each of the following solids,
 - write a balanced chemical equation for the equilibrium that would be established when the solid dissolves in water to form a saturated solution.
 - write the K_{sp} expression for each equilibrium

Solid	Balanced Equation	K_{sp}
barium carbonate	$BaCO_3(s) \leftrightarrows Ba^{2+}(aq) + CO_3^{2-}(aq)$	$K_{sp} = [\mathrm{Ba}^{2+}][\mathrm{CO}_3^{2-}]$
calcium chromate		$K_{sp} =$
silver sulfate		$K_{sp} =$
magnesium hydroxide		$K_{sp} =$

2. The following table contains some information about the solids from Question 1. Fill in the missing information in the table below.

Name	Molar Mass (g/mol)	Solubility of the Solid Compound (g/L)	Cation concentration in a saturated solution (<i>M</i>)	Anion concentration in a saturated solution (M)
barium carbonate	197.34	0.014	$[Ba^{2+}] = 7.1 \times 10^{-5}$	$[\mathrm{CO}_3{}^{2-}] = 7.1 \text{ x } 10^{-5}$
calcium chromate	156.08	0.010	[Ca ²⁺] =	[CrO ₄ ^{2–}] =
silver sulfate	311.80	4.8	[Ag ⁺] =	[SO ₄ ^{2–}] =
magnesium hydroxide	58.32	0.0096	[Mg ²⁺] =	[OH ⁻] =

3. If you combine the K_{sp} information from Question 1 and the concentration of each ion (in units of *M*) from Question 2, you can calculate the value of K_{sp} for each solid. Show the set-up for your calculations in the space provided.

Name	Calculated value of K _{sp}	
barium carbonate	$(7.1 \text{ x } 10^{-5})(7.1 \text{ x } 10^{-5}) = 5.0 \text{ x } 10^{-9}$	
calcium chromate		
silver sulfate		
magnesium hydroxide		

4. Fill in the missing information in the table below.

Name	Formula	K_{sp}	Cation concentration in a saturated solution (<i>M</i>)	Anion concentration in a saturated solution (<i>M</i>)
barium carbonate	BaCO ₃	5.0 x 10 ⁻⁹	$[Ba^{2+}] = 7.1 \text{ x } 10^{-5}$	$[CO_3^{2-}] = 7.1 \times 10^{-5}$
calcium sulfate		2.4 x 10 ⁻⁵	[Ca ²⁺] =	[SO ₄ ^{2–}] =
silver carbonate		8.1 x 10 ⁻¹²	[Ag ⁺] =	[CO ₃ ^{2–}] =
zinc hydroxide		3.0 x 10 ⁻¹⁶	$[Zn^{2+}] =$	[OH ⁻] =

5. Each of the following solids is more soluble in an acidic solution than it is in pure water. Write a balanced, net-ionic equation that shows why this occurs.

Formula	Equation that shows why the solid is more soluble in an acidic solution
PbF ₂	$PbF_2 + 2 H^+ \hookrightarrow Pb^{2+} + 2 HF$
Ni(OH) ₂	$Ni(OH)_2 + 2 H^+ \leftrightarrows$
CaCO ₃	$CaCO_3 + 2 H^+ \leftrightarrows$
CuS	$CuS + 2H^+ \leftrightarrows$

- 6. In a certain experiment, 50.0 mL of 5.0 x $10^{-4} M \text{ CaCl}_2$ and 50.0 mL of 3.0 x $10^{-3} M \text{ KF}$ are combined together in a beaker. (K_{sp} for CaF₂ = 3.9 x 10^{-11} .)
 - (a) Calculate $[Ca^{2+}]$ and $[F^{-}]$ for the combined solution (100.0 mL total) in the beaker. Show your calculations below.
 - (b) Based on your answer to (a), calculate the value of Q. Show the set-up for your calculations below.
 - (c) A precipitate of CaF_2 (will won't) form in the beaker because the value of

Q is (less more) than the value of K_{sp} .