

• WARM UP (your brain)

• First start by writing the formulas for all the compounds

• Round 1:THE STRONGER ACID moves on!

- $\circ~$ Use the table to find which acid has the highest K_a
- Round 2: Highest pH moves on!
 - If the acid is combined with its conjugate base, which buffer solution would have a higher pH
 - Assume the concentration of the acid (HA) is 0.10 M and its conjugate base (A-) is 0.10M
 - The conjugate base from the most basic buffer solution moves on
- <u>Round 3</u>: The Most MASSIVE moves on!
 - Calculate formula mass.
 - The winner has the greatest formula mass.
- Round 4: It's a SOLID winner
 - When in a solution with Ca²⁺, which compound will precipitate out?
 - The precipitate is the winner!

• **PROVE YOUR HONOR**: Draw the Lewis Dot Diagram of **SO**₄² (must use Formal Charge & Resonance for the correct structure)

TABLE 16.1 Acid-Ionization Constants at 25°C*			
Substance	Formula	Ka	
Acetic acid Benzoic acid Boric acid	$HC_2H_3O_2$ $HC_7H_5O_2$ H_2BO_2	1.7×10^{-5} 6.3×10^{-5} 5.9×10^{-10}	
Carbonic acid	H_2CO_3 HCO_3^-	4.3×10^{-7} 4.8×10^{-11}	
Formic acid Formic acid Hydrocyanic acid	HOCN HCHO ₂ HCN	3.5×10^{-4} 1.7×10^{-4} 4.9×10^{-10}	
Hydrofluoric acid Hydrogen sulfate ion	HF HSO ₄ ⁻	6.8×10^{-4} 1.1×10^{-2} 8.0×10^{-8}	
Hypochlorous acid	H25 HS ⁻ HClO	$1.2 \times 10^{-13^{\circ}}$ 3.5×10^{-8}	
Nitrous acid Oxalic acid	HNO_2 $H_2C_2O_4$ $HC_2O_4^-$	4.5×10^{-4} 5.6×10^{-2} 5.1×10^{-5}	18

