Electrochemistry

Name

Period Date

UNIT TEST - PRACTICE

Part 1 – Multiple Choice

You should allocate 15 minutes to finish this portion of the test. No calculator should be used. A periodic table and data table will be provided. Select the answer that best responds to each question.

Use the Table of Standard Reduction Potentials to	
respond to the questions in Part 1.	
$O_2(g) + 4 H^+ + 4 e^- \rightarrow 2 H_2O(l)$	$E^{\circ}_{red} = +1.23 V$
$Ag^+ + e^- \rightarrow Ag(s)$	$E^{\circ}_{red} = +0.80 \text{ V}$
$\mathrm{Fe}^{3+} + e^- \rightarrow \mathrm{Fe}^{2+}$	$E^{\circ}_{red} = +0.77 V$
$\mathrm{Cu}^{2+} + 2 \ e^- \rightarrow \mathrm{Cu}(\mathrm{s})$	$E^{\circ}_{red} = +0.34 V$
$Pb^{2+} + 2 e^- \rightarrow Pb(s)$	$E^{\circ}_{red} = -0.13 V$
$\operatorname{Sn}^{2+} + 2 \ e^- \rightarrow \operatorname{Sn}(s)$	$E^{\circ}_{red} = -0.14 V$
$Ni^{2+} + 2 e^- \rightarrow Ni(s)$	$E^\circ_{red} = -0.25 V$
$\operatorname{Zn}^{2+} + 2 \ e^{-} \rightarrow \operatorname{Zn}(s)$	$E^{\circ}_{red} = -0.76 V$
$2 \operatorname{H}_2O(1) + 2 e^- \longrightarrow \operatorname{H}_2(g) + 2 \operatorname{OH}^-$	$E^{\circ}_{red} = -0.83 V$
$Mn^{2+} + 2 e^- \rightarrow Mn(s)$	$E^{\circ}_{red} = -1.18 V$
$Al^{3+} + 3 e^- \rightarrow Al(s)$	$E^{\circ}_{red} = -1.66 V$
$Na^+ + e^- \rightarrow Na$	$E^{\circ}_{red} = -2.71 V$

1. A galvanic cell was constructed by placing Sn(s) in 1.0 <u>M</u> SnCl₂ and Zn(s) in 1.0 <u>M</u> ZnCl₂. Which of the following takes place at the anode?

(A) $Sn(s) \rightarrow Sn^{2+} + 2 e^{-}$ (B) $Zn(s) \rightarrow Zn^{2+} + 2 e^{-}$ (C) $Sn^{2+} + 2 e^{-} \rightarrow Sn(s)$ (D) $Zn^{2+} + 2 e^{-} \rightarrow Zn(s)$

2. What is the value of E°_{cell} for a galvanic cell that undergoes the following reaction?

 $2 \operatorname{Al}(s) + 3 \operatorname{Cu}^{2+} \rightarrow 3 \operatorname{Cu}(s) + 2 \operatorname{Al}^{3+}$

- (A) +4.34 V
- (B) +2.00 V
- (C) -1.32 V
- (D) -2.30 V

- 3. A galvanic cell is constructed by placing unknown metal X in a solution of X²⁺ and Pb(s) in a solution of Pb²⁺, and the E°_{cell} was found to be +2.24 V. After some time, the mass of the X decreases while the mass of Pb increases. What is the E°_{red} for the half reaction X²⁺ + 2e⁻ →X?
 (A) +2.37 V
 (B) +2.11 V
 (C) -2.11 V
 (D) -2.37 V
- 4. Strips of Pb and Zn metals are placed in a solution of Ni(NO₃)₂. On which metal would a change be observed?
 (A) Pb(s) only
 (B) Zn(s) only
 (C) Both Pb(s) and Zn(s)
 - (D) Neither metal
- 5. What is the value of ΔG° for the following reaction?

 $\begin{array}{l} Mn^{2+}+2 \ Fe^{2+} \rightarrow Mn(s)+2 \ Fe^{3+} \\ (A) \ -79 \ kJ/mol \\ (B) \ +69 \ kJ/mol \end{array}$

- (C) +376 kJ/mol
- (D) +525 kJ/mol
- In a Ag/Cu Galvanic cell, Ag(s) and Cu(s) electrodes were placed in a solution with 0.50 M Ag⁺ and 0.50 M Cu²⁺. What can be concluded about the cell potential?
 - (A) The cell potential is less than the standard cell potential.
 - (B) The cell potential is the same as the standard cell potential.
 - (C) The cell potential is greater than the standard cell potential.
 - (D) Nothing can be concluded about the potential of this cell.

- 7. A solution of unknown pH is placed in the hydrogen compartment of a galvanic cell, with the H₂ pressure maintained at 1 atm. The other halfcell compartment consists of a Cu/Cu²⁺ electrode with $[Cu^{2+}] = 1.00 \text{ M}$. If the overall cell potential at 25°C is +0.65 V, which describes the hydrogen component?
 - (A) Hydrogen is the anode with a $[H^+] > 1.0 \underline{M}$.
 - (B) Hydrogen is the cathode with a $[H^+] > 1.0 \underline{M}$.
 - (C) Hydrogen is the anode with a $[H^+] < 1.0 \text{ }\underline{M}.$
 - (D) Hydrogen is the cathode with a $[H^{\scriptscriptstyle +}] < 1.0~\underline{M}.$
- 8. What is produced at the cathode when 1.0 <u>M</u> NaCl is electrolyzed?
 - (A) $Cl_2(g)$
 - (B) $H_2(g)$
 - (C) Na(s)
 - (D) $O_2(g)$

- 9. How long will it take to plate 0.100 g Cu from a Cu(NO₃)₂ solution if a current of 8.0 amp is used?
 (A) 9.0 s
 (B) 19 s
 - (C) 38 s
 - (D) 304 s
- 10. How many grams of Na will be deposited from molten NaCl by a current of 3.0 amp flowing for 4.0 hours?
 - (A) 1.1 g
 - (B) 10. g
 - (C) 13 g
 - (D) 22 g