21 • Electrochemistry

- In the galvanic cell, reduction occurs at the _____, and in the electrolytic cell, reduction occurs at the _____.
 - a. anode, anode d. cathode, anode
 - b. cathode, cathode e. none of these
 - c. anode, cathode
- 2. What product is formed at the anode when molten NaCl is electrolyzed?

 - c. NaCl
- 3. What is produced at the cathode when concentrated brine (NaCl solution) is electrolyzed?
 - a. H₂O d. OHb. Na e. O₂
 - c. NaCl
- 4. What product is produced at the anode when aqueous CuBr₂ is electrolyzed?

a.	Cu	d.	H_2
b.	Br ₂	e.	OH
c.	O ₂		

- 5. Which of the following is true for an electrolytic cell?
 - a. positive ions move toward the anode.
 - b. fairly large volumes of liquid may have excess positive charge.
 - c. oxidation sometimes occurs without any reduction occurring.
 - d. reduction occurs at the cathode.
 - e. electron flow in the external circuit is from the cathode to the anode.

PRACTICE QUIZ

6.	What is the cell potential of the Zn/Cu cell, at			
	25°C, under the cond	litio	ns given below?	
Zn(s	$(s) + Cu^{+2} (1.00 \underline{M}) \rightarrow$	Cu	$(s) + Zn^{+2} (0.100 \underline{M})$	
	a. 1.07 V	d.	0 V	
	b. 1.13 V	e.	0.55 V	
	c. 1.10 V			
7.	How many moles of	cop	per will be deposited	

- How many moles of copper will be deposited from a CuSO₄ solution by a current of 12.0 amp flowing for 8.0 hours? 1 F = 96,500 C.
 a. 0.50 mol
 d. 3.6 mol
 - b. 48 mol e. 1.2 mol c. 1.8 mol
- 8. How many grams of Na will be deposited from molten NaCl by a current of 3.0 amp flowing for 4.0 hours? 1 Faraday = 96,500 C.
 a. 13 g
 d. 22 g
 - b. 10 g e. 1.1 g c. 0.050 g
- When copper is purified in an electrolytic cell, the anode is made of _____ and the cathode is made of _____.
 - a. platinum, platinum
 - b. platinum, copper
 - c. iron, copper
 - d. copper, platinum
 - e. copper, copper
- 10. The Down's Cell is used for the commercial production of which of the following?
 - a. Na d. Al
 - b. Mg e. Ca
 - c. O₂

11. A standard 12 V car battery contains how many single cells?

a. 1	d.	6
b. 2	e.	3
c. 12		

- 12. The anode in a dry cell is composed of
 - a. graphite d. Zn
 - b. MnO₂ e. Cu
 - c. NH₄Cl
- 13. How many minutes would it take to plate 1 lb (454 g) Al using a current of 2000 amp? 1 F = 96,500 C.
 - a. 812 min. d. 62.7 min.
 - b. 13.5 min. e. 0.306 min.
 - c. 40.6 min.
- 14. How long will it take to plate 0.100 g Cu from a Cu(NO₃)₂ solution if a current of 8.0 amp is used? 1 F = 96,500 C.

a.	9.0 s	a.	19 s
b.	38 s	e.	none of these
c.	304 s		

15. How long will it take to plate 0.50 g Na from molten NaCl if a current of 30.0 amp is used?1 F = 96,500 C

a.	69.9 s	d.	0.38 s
b.	12.9 s	e.	25.7 s
c.	3.8 s		

16. How many grams of Al will be deposited from molten AlCl₃ by a current of 15.0 amp flowing for 24.0 hr? 1 F = 96,500 C a. 0.0335 g d. 363 g b. 121 g e. 1090 g c. 0.538 g

- 17. What is the function of a salt bridge?
 - a. functions as anode
 - b. functions as cathode
 - c. maintains electrical neutrality
 - d. keeps level of liquid equal in both half cells
 - e. adds taste
- 18. Two coulometers, one containing $AgNO_3$ solution, the other a solution of an unknown metal with a 2+ charge, are connected in series. After 4.00 amp of current is passed through the coulometers, 11.00 g of silver and 6.05 g of M are deposited. What is M? 1 F = 96,500 C
 - a. Ag d. Sn
 - b. Ni e. Au
 - c. Mg
- 19. Two coulometers, one containing AgNO₃ solution, the other a solution of an unknown metal, M, are connected in series. After a current is passed through the coulometers, 5.00 g silver is deposited and 6.00 g of M. What is the equivalent weight of M?

a.	64.5 g	d.	89.9 g
b.	30.0 g	e.	129 g
c.	45.0 g		

20. A solution of unknown pH is placed in the hydrogen compartment of a galvanic cell, with the H₂ pressure maintained at 1 atm. The other half-cell compartment consists of a Cu/Cu⁺² electrode with $[Cu^{+2}] = 1.00 \text{ M}$. If the overall cell potential at 25°C is +0.65 V, what is the pH of the solution?

a.	10.48	d.	10.98
b.	16.72	e.	5.24
c.	5.49		

21. What is the cell potential, at 25°C, for the cell that runs with the reaction given below?

 $Pb(s) + Fe^{+2} (0.20 \underline{M}) \rightarrow Fe(s) + Pb^{+2} (0.50 \underline{M})$

a. –0.33 V	d. –0.36 V
b. –0.31 V	e. –0.26 V
c. –0.30 V	

- 22 An electrolytic cell is constructed by dipping a zinc metal electrode into a $6.0 \text{ M} \text{ ZnSO}_4$ solution for one half-cell and by dipping a zinc metal electrode into a $0.0100 \text{ M} \text{ ZnSO}_4$ solution for the other half-cell. This is called a concentration cell. What is E_{cell} for this cell at 25°C?
 - a. 1.10 V d. 0.85 V b. 0.164 V e. 0 V c. 0.082 V
- 23. What is the equilibrium constant, at 25°C, for the reaction, Cu⁺ + Ag → Ag⁺ + Cu?
 a. 5 x 10⁻²³
 b. 2 x 10⁻⁵
 c. 2 x 10⁻⁸
- 24. What is ΔG° for the reaction, $2H_2O + 2K \rightarrow 2K^+ + 2OH^- + H_2$, at 25°C? a. -403 kJ d. -362 kJ b. -724 kJ e. -202 kJ c. -243 kJ
- 25. What is ΔG° for the reaction, Mg + 2H⁺ → Mg⁺² + H₂, at 25°C?
 a. -459 kJ
 d. +459 kJ
 - b. 0 kJ e. +109 kJ
 - c. -109 kJ

26. What is ΔG° for the reaction,

 $Mn^{+2} + 2Fe^{+2} \rightarrow Mn + 2Fe^{+3}$, at 25°C? a. 50.2 kJ d. 347 kJ

- b. 49.6 kJ e. 174 kJ
- c. 0.0 kJ

- 27. What is the standard cell potential, E°cell, for the reaction,
 Cl₂(g) + 2Cu(s) → 2Cu⁺(aq) + 2Cl⁻(aq)
 a. +0.32 V
 d. +1.02 V
 - b. -0.32 V e. +0.84 V

c. -1.02 V

- 28. What is the standard cell potential, $PbSO_4(s) + 2OH^-(aq) + H_2(g) \rightarrow$ $2H_2O(1) + Pb(s) + SO_4^{-2}(aq)$ a. +1.19 V d. -0.47 V b. -1.19 V e. +0.47 V c. 0.00 V
- 29. What is the standard cell potential, E° cell, for the reaction, $Pb^{+2} + 2Fe^{+2} \rightarrow 2Fe^{+3} + Pb^{\circ}$? a. -0.90 V d. -0.64 V b. +0.90 V e. -1.67 V c. +1.67 V
- 30. With which of the following will Br₂ react spontaneously if all species are at 1.0 M concentration (also called "unit concentration")?
 a. Cl⁻ b. Pb c. I₂ d. F⁻
 e. none of these
- 31. Which of the following is most easily oxidized?
 a. Li⁺ b. F₂ c. H₂ d. F⁻
 - e. Li
- 32. When an unknown half-cell electrode is connected to the negative terminal of a potentiometer, and a hydrogen electrode to the positive terminal, the potentiometer reads 0.54 V. What is the E° for the unknown?
 a. -1.08 V
 b. +0.54 V
 c. 0.00 V

(potentiometers are devices that measure voltage. They measure it in the opposite sign of what our E would be. You don't need to know that anymore!)

c. +1.08 V

- 33. One volt equals
 - a. one joule secb. one joule/secc. none of these
 - c. one joule/coul
- 34. In a galvanic cell, the anode has a ______ charge, and in an electrolytic cell, the anode has a ______ charge.
 a. +, + d. -,
 - b. +, e. none of these c. -, +
- 35. The equilibrium constant, at 25°C, for the hypothetical reaction below is 2.2 x 10⁻⁶. What is E° for this reaction?

36. The equilibrium constant, at 25°C, for the reaction given below is 2.5×10^{-19} . What is

 E° for this reaction?

 What is the equilibrium constant, at 25°C, for the reaction,

38. What is the equilibrium constant, at 25°C, for the reaction, $2Fe^{+2} + Br_2 \rightarrow 2Fe^{+3} + 2Br^-$?

a. $8 \ge 10^{62}$ d. $3 \ge 10^{5}$ b. $2 \ge 10^{-8}$ e. $4 \ge 10^{-6}$

c. 7 x 10¹⁰

Answers:

1.	В	11. D	21. A	31. E
2.	D	12. D	22. C	32. D
3.	D	13. C	23. B	33. C
4.	В	14. B	24. A	34. C
5.	D	15. A	25. A	35. D
6.	В	16. B	26. D	36. C
7.	С	17. C	27. E	37. E
8.	В	18. D	28. E	38. C
9.	E	19. E	29. A	
10.	A	20. E	30. B	