
STATION 1 - CELL NOTATION

anode reaction $Co(s) \rightarrow Co^{2+}(aq) + 2 e^{-}$ cathode reaction $Cu^{2+}(aq) + 2 e^{-} \rightarrow Cu(s)$ overall reaction $Co(s) + Cu^{2+}(aq) \rightarrow Co^{2+}(aq) + Cu(s)$

The "cell notation" for this electrochemical cell is $Co(s) | Co^{2+} || Cu^{2+} | Cu(s)$ Use the above information to answer the following questions:

- 1. The left portion of the cell notation represents the _____ (anode / cathode).
- 2. The "||" represents the _____ (anode / cathode / salt bridge)
- 3. Write the cell notation for $Cl_2(g) + Zn(s) \rightarrow 2 Cl^- + Zn^{2+}$
- 4. Write the cell notation for $2Ag(s) + Pt^{2+} \rightarrow Pt(s) + 2Ag^{+}$ ____ | ___ | ___ | ____ |

21 • Electron Transfer Reactions

Standard Reduction Potentials (volts)	
$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$	+0.80
$I_2(s) + 2e^- \rightarrow 2I^-(aq)$	+0.535
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.337
$Sn^{4+}(aq) + 2e^{-} \rightarrow Sn^{2+}(aq)$	+0.15
$Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$	-0.14
$Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$	-0.40
$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$	-0.763
$2H_2O(1) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.828
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.66

STATION 2 - E° VALUES

- 1. A cell is made from Sn in 1.0 \underline{M} Sn(NO₃)₂ and Al in 1.0 \underline{M} Al(NO₃)₃. The E° of the cell is _____ volts.
- 2. A cell is made from Sn in 1.0 M Sn(NO₃)₂ and Cd in 1.0 M Cd(NO₃)₂. The E° of the cell is ______ volts.
- 3. A cell is made from Ag in 1.0 \underline{M} AgNO₃ and Cu in 1.0 \underline{M} Cu(NO₃)₂. The E° of the cell is _____ volts.
- 4. A cell is made from Zn in 1.0 M Zn(NO₃)₂ and Ag in 1.0 M AgNO₃. The E° of the cell is _____ volts.

STATION 3 - NERNST EQUATION

Standard Reduction Potentials (volts)

 $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ -0.14

$$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$$
 -1.66

$$E_{cell} = E^{\circ} - \frac{RT}{nF} \ln Q$$

look at your equation sheet for R and F. "n" is the moles of electrons gained or lost in a redox reaction.

- 1. $Fe(s) + Cu^{2+}(aq) \rightarrow Fe^{2+}(aq) + Cu(s)$ $E^{\circ} = +0.78 \text{ V}$
 - a) What is n? _____ moles
 - b) If $[Cu^{2+}] = 0.10 \text{ M}$ and $[Fe^{2+}] = 1.5 \text{ M}$,

$$Q = \frac{[\quad]}{[\quad]} =$$

- c) Calculate the E_{cell} .
- 2. A cell is made from Sn in .25 M Sn(NO₃)₂ and Al in 0.25 M Al(NO₃)₃ at 25°C.
 - a) The E° of the cell is _____ volts.
 - b) The reaction at the anode is:
 - c) The reaction at the cathode is:
 - d) The overall reaction is:
 - e) The value of n is _____ moles.
 - f) $Q = \frac{[\]}{[\]} =$
 - g) Calculate the Ecell.

21 • Electron Transfer Reactions

STATION 4 - BALANCING REDOX EQ'S(ACIDIC)

Balance the following equations in acidic solution:

$$Cr_2O_7^{-2}(aq) + C_2O_4^{-2}(aq) \rightarrow Cr^{+3}(aq) + CO_2(g)$$

$$MnO_4^-(aq) + SO_2(g) \rightarrow SO_4^{-2}(aq) + Mn^{+2}(aq)$$

STATION 5 - BALANCING REDOX EQ'S (BASIC)

Balance the following equations in basic solution:

$$Mn^{+2}(aq) + ClO_3^-(aq) \rightarrow MnO_2(s) + ClO_2(g)$$

$$Cl_2(g) \rightarrow Cl^-(aq) + ClO_3^-(aq)$$

21 • Electron Transfer Reactions

STATION 6 - ELECTROLYSIS

How long will it take to electroplate each of the following with a current of 100.0 A?

1.0 g of Al(s) from aqueous Al⁺³.

1.0 g of Ni(s) from aqueous Ni⁺².

STATION 7 - REACTIVITY

Consider the following half-reactions and E° values:

 $Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$

 $E^{\circ}=0.80\ V$

 $Cu^{+2}(aq) + 2e^{-} \rightarrow Cu(s)$

 $E^{\circ} = 0.34 \text{ V}$

 $Pb^{+2}(aq) + 2e^{-} \rightarrow Pb(s)$

 $E^{\circ} = -0.13 \text{ V}$

1. Which of these metals or ions is the strongest **oxidizing agent**? _____

2. Which is the strongest **reducing agent**?

Predict whether each of the following reactions will occur as written:

3.
$$Cu^{2+} + Pb^{\circ} \rightarrow Pb^{2+} + Cu^{\circ}$$

4.
$$Pb^{2+} + 2Ag^{\circ} \rightarrow 2Ag^{+} + Pb^{\circ}$$

5.
$$2Ag^+ + Pb^{2+} \rightarrow 2Ag^{\circ} + Pb^{\circ}$$

21 • Electron Transfer Reactions

STATION 8 - SKETCH A CELL

Consider these half-reactions & E° values: $Ag^{+}(aq) + e^{-} \rightarrow Ag(s) \quad E^{\circ} = 0.80 \text{ V}$

$$Cu^{+2}(aq) + 2e^{-} \rightarrow Cu(s)$$
 $E^{\circ} = 0.34 \text{ V}$
 $Pb^{+2}(aq) + 2e^{-} \rightarrow Pb(s)$ $E^{\circ} = -0.13 \text{ V}$

Which two metals and 1.0 M solutions would give the greatest voltage? ____

Label:

• the anode reaction

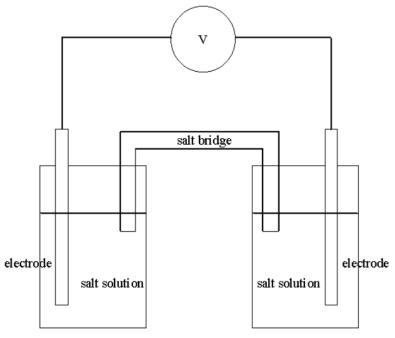
• the cathode reaction

• the overall reaction

• the metals used for each electrode

• the ions in solution

• the expected voltage


the direction of flow of electrons

• the flow of ions in the salt bridge

■ the charge on each electrode (+ or –)

• ions you might use in the salt bridge

• the observed changes in the electrodes

Anode oxidation reaction

Cathode reduction reaction