Name:	Date:	Period:	Seat #:
Balancing Redox Equations An acidified solution of potassium of	lichromate is added to a s	solution of iron(II)	sulfate.
Aluminum metal is added to a strong hydrogen gas and the complex ion,		ium hydroxide for	ming bubbles of
☐ Electrolysis Reactions Use your Reduction Potential Chart the overall reaction during the electronsection.			ction at the cathode, and
Electrolysis Stoichiometry A current of 2.50 amps is passed thr What mass of Ni metal is deposited	=	O3)2 for 2.00 hours	3.
Predicting Spontaneous (Product-Fa State whether each reaction below is $ \underline{\qquad}\qquad Br_2 + 2Cl^- \rightarrow Cl_2 + 2Br^- \\ \underline{\qquad}\qquad Cu^{2+} + 2I^- \rightarrow I_2 + Cu \\ \underline{\qquad}\qquad 2Au^{3+} + 3Zn \rightarrow 3Zn^{2+} + 2Au^{3+} + 2Au^{3+} + 2Au^{3+} + 3Zn^{2+} + 2Au^{3+} + 2Au^{3+}$	s product-favored or not.	Use your reduction	on potential chart.

of Zn(II) sulfate.	$u^{3+} + 3e^{-} \rightarrow Au(s)$	+1.50				
	$u^{-} + 3e^{-} \rightarrow Au(s)$ $u^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$	-0.763				
	(uq) 20 / 2m(3)	0.703				
Anode Reaction	Sketch th	ne Cell	Cathode Reaction			
Overall Reaction & E° (volts)						
		, ,				
Non-Standard Electrochem Calculate the voltage of the	ical Cell e above cell if the [Au ³⁺] =	$5.00 \text{ M} \text{ and } [\text{Zn}^{2+}] =$	0.100 <u>M</u> .			
Alkali Metal in Water Write the balanced chemic	al equation for the reaction	of potassium metal	dropped into water.			
Oxidation-Reduction of All Which element in the chen	xali Metals in Water nical equation above, was <u>c</u>	oxidized and which e	lement was reduced?			
	s oxidized and was the		rement was <u>reacted</u> .			
	s reduced and was the					
Electrolysis of Water	al equation for the electroly	-	on) of water.			
What are the two half-read	ctions for this overall react	ion, showing the <u>red</u>	uction and the oxidation?			
>						
>						