Name	KEY		
Period	Date	1 1	

20 • Entropy and Free Energy

QUICK CHECK

☐ Positive or Negative:

When solid CaCl₂ dissolves in water, the solution gets hot. Predict the signs of ΔS , ΔH , and ΔG .

because it Does dissolve

☐ Spontaneity:

Put a check next to the following situations that would lead to a spontaneous reaction.

$ \sqrt{} $	ΔS	$\Delta \mathbf{H}$	Temperature	-	
	+	+	low temp		
-	+	_	high temp	any	temp
	-	+	high temp		
	-	-	low temp	1	

☐ Entropy Change:

Calculate the standard entropy change for the following reaction, $Cu(s) + \frac{1}{2} O_2(g) \rightarrow CuO(s)$, given that

	/_
$S^{\circ}[Cu(s)] = 33.15 \text{ J/K} \cdot \text{mol}$	
$S^{\circ}[O_2(g)] = 205.14 \text{ J/K} \cdot \text{mol}$	
$S^{\circ}[CuO(s)] = 42.63 \text{ J/K} \cdot \text{mol}$	

☐ Changeover Temperature:

At what temperature would a given reaction become spontaneous if $\Delta H = +119$ kJ and $\Delta S = +263$ J/K?

$$DG = DH - TDS$$

$$O = DH - TDS$$

$$DH = TDS$$

$$T = DH$$

$$DG = DH - TDS$$

$$T = DH$$

$$DG = DH - TDS$$

$$T = DH$$

☐ Entropy:

In which one of the following reactions do you expect to have a decrease in entropy?

$$a)$$
 Fe(s) \rightarrow Fe(l)

b)
$$Fe(s) + S(s) \rightarrow FeS(s) \sim$$

(c)
$$2 \text{ Fe(s)} + 3/2 \text{ O}_2(g) \rightarrow \text{Fe}_2\text{O}_3(s)$$

d)
$$HF(1) \rightarrow HF(g)$$

e)
$$2 H_2O_2(1) \rightarrow 2 H_2O(1) + O_2(g)$$