Dougherty Valley HS Chemistry - AP Thermochemistry - Review

Period:

Seat#:

Review

STATION 1: ENTROPY CHANGE

For each of the following examples, decide whether the entropy is increasing or decreasing. Is $\Delta S + or -?$

ΔS is	The electrolytic decomposition of water.	$2\mathrm{H}_{2}\mathrm{O}(l) \rightarrow 2 \mathrm{H}_{2}(g) + \mathrm{O}_{2}(g)$
ΔS is	The freezing of water.	$H_2O(l) \rightarrow H_2O(s)$
ΔS is	The reaction of sodium metal with water.	$2\mathrm{Na}(\mathrm{s}) + 2\mathrm{H}_2\mathrm{O}(l) \rightarrow \mathrm{H}_2(\mathrm{g}) + 2\mathrm{Na}^+(\mathrm{aq}) + 2\mathrm{OH}^-(\mathrm{aq})$
ΔS is	The boiling of water.	$H_2O(l) \rightarrow H_2O(g)$
ΔS is	The reaction of OF ₂ and water.	$OF_2(g) + H_2O(g) \rightarrow O_2(g) + 2HF(g)$

Entropy and Free Energy

STATION 2: \triangle H, \triangle S, \triangle G, GIBB'S FREE ENERGY

Substance	S° (J/mol·K)	$\Delta H^{\circ}f(kJ/mol)$
$C_2H_2(g)$	200.9	226.7
$H_2(g)$	130.7	0
$C_2H_6(g)$	229.6	-84.7

 $C_2H_2(g) + 2 H_2(g) \rightarrow C_2H_6(g)$

Calculate ΔS , ΔH , and ΔG for this reaction at 298 K.

Entropy and Free Energy

STATION 3: EQUILIBRIUM

Consider the boiling of liquid bromine: $Br_2(l) \leftrightarrows Br_2(g)$

At 25°C, $\Delta H^{\circ} = 30.84 \text{ kJ/mol}$ and $\Delta S^{\circ} = 92.9 \text{ J/mol} \cdot \text{K}$ for this reaction. Calculate the value of ΔG° .

Assuming that ΔH and ΔS do not change at different temperatures, calculate the normal boiling point of liquid bromine.

Entropy and Free Energy

STATION 4: PREDICTING SPONTANEITY

Consider the reaction: $MgO(s) + SO_2(g) \rightarrow MgSO_3(s)$

What is the sign of ΔH for this reaction? _____ Justify your answer.

What is the sign of ΔS for this reaction? _____ Justify your answer.

This reaction will be:

- a) spontaneous at all temperatures
- b) spontaneous at high temperatures
- c) spontaneous at low temperatures
- d) non-spontaneous at all temperatures

Entropy and Free Energy

STATION 5: K_{eq} & Δ G

Consider the reaction:

 $C_2H_5Cl(g) + Cl_2(g) \rightarrow C_2H_4Cl_2(g) + HCl(g)$

Standard Free Energies of Formation at 298 K

Substance	ΔG°_{f} kJ·mol ⁻¹
$C_2H_4Cl_2(g)$	-80.3
$C_2H_5Cl(g)$	-60.5
HCl(g)	-95.3
$\operatorname{Cl}_{2(g)}$	0

Calculate the value of ΔG° for this reaction.

Calculate the value of K_{eq} for the reaction at 298 K. [$\Delta G^{\circ} = -RT \ln K$; $R = 8.31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$]

From the AP Exam:

THERMOCHEMISTRY/KINETICS

 $\Delta S^{\circ} = \sum S^{\circ}$ products $-\sum S^{\circ}$ reactants $\Delta H^{\circ} = \sum \Delta H_f^{\circ}$ products $-\sum \Delta H_f^{\circ}$ reactants $\Delta G^{\circ} = \sum \Delta G_f^{\circ}$ products $-\sum \Delta G_f^{\circ}$ reactants $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$ $= -RT \ln K = -2.303 RT \log K$ $= -n \mathcal{F} E^{\circ}$ $\Delta G = \Delta G^{\circ} + RT \ln Q = \Delta G^{\circ} + 2.303 RT \log Q$ $q = mc\Delta T$ $C_p = \frac{\Delta H}{\Delta T}$ $\ln[A]_t - \ln[A]_0 = -kt$ $\frac{1}{\left[\mathbf{A}\right]_{t}} - \frac{1}{\left[\mathbf{A}\right]_{0}} = kt$ $\ln k = \frac{-E_a}{R} \left(\frac{1}{T}\right) + \ln A$

Gas constant, $R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$ $= 0.0821 \text{ L} \text{ atm mol}^{-1} \text{ K}^{-1}$ $= 62.4 \text{ L torr mol}^{-1} \text{ K}^{-1}$ = 8.31 volt coulomb $mol^{-1} K^{-1}$