Review

Name: Date: Period: Seat #:

STATION 1: ENTROPY CHANGE

For each of the following examples, decide whether the entropy is increasing or decreasing. Is $\Delta S + or -?$

 ΔS is _____ The electrolytic decomposition of water. $2H_2O(l) \rightarrow 2H_2(g) + O_2(g)$

 ΔS is ____ The freezing of water. $H_2O(l) \rightarrow H_2O(s)$

 ΔS is _____ The reaction of sodium metal with water. $2Na(s) + 2H_2O(l) \rightarrow H_2(g) + 2Na^+(aq) + 2OH^-(aq)$

 ΔS is ____ The boiling of water. $H_2O(l) \rightarrow H_2O(g)$

 ΔS is _____ The reaction of OF_2 and water. $OF_2(g) + H_2O(g) \rightarrow O_2(g) + 2HF(g)$

Entropy and Free Energy

STATION 2: Δ H, Δ S, Δ G, GIBB'S FREE ENERGY

$$C_2H_2(g) + 2 H_2(g) \rightarrow C_2H_6(g)$$

Substance	S° (J/mol·K)	$\Delta H^{\circ} f(kJ/mol)$
$C_2H_2(g)$	200.9	226.7
$H_2(g)$	130.7	0
$C_2H_6(g)$	229.6	-84.7

Calculate ΔS , ΔH , and ΔG for this reaction at 298 K.

Entropy and Free Energy

STATION 3: EQUILIBRIUM

Consider the boiling of liquid bromine: $Br_2(l) = Br_2(g)$

At 25°C, $\Delta H^{\circ} = 30.84$ kJ/mol and $\Delta S^{\circ} = 92.9$ J/mol·K for this reaction.

Calculate the value of ΔG° .

Assuming that ΔH and ΔS do not change at different temperatures, calculate the normal boiling point of liquid bromine.

Entropy and Free Energy

STATION 4: PREDICTING SPONTANEITY

Consider the reaction: $MgO(s) + SO_2(g) \rightarrow MgSO_3(s)$

What is the sign of ΔH for this reaction? _____ Justify your answer.

What is the sign of ΔS for this reaction? _____ Justify your answer.

This reaction will be:

- a) spontaneous at all temperatures
- b) spontaneous at high temperatures
- c) spontaneous at low temperatures
- d) non-spontaneous at all temperatures

Entropy and Free Energy

STATION 5: K_{eq} & ΔG

Consider the reaction:

$$C_2H_5Cl(g) + Cl_2(g) \rightarrow C_2H_4Cl_2(g) + HCl(g)$$

Standard Free Energies of Formation at 298 K

Substance	ΔG°_{f} kJ·mol ⁻¹
$C_2H_4Cl_2(g)$	-80.3
$C_2H_5Cl(g)$	-60.5
HCl(g)	-95.3
$\text{Cl}_2(g)$	0

Calculate the value of ΔG° for this reaction.

Calculate the value of K_{eq} for the reaction at 298 K.

$$[\Delta G^{\circ} = -RT \ln K; R = 8.31 \text{ J·mol}^{-1} \cdot \text{K}^{-1}]$$

From the AP Exam:

THERMOCHEMISTRY/KINETICS

$$\Delta S^{\circ} = \sum S^{\circ}$$
 products $-\sum S^{\circ}$ reactants

$$\Delta H^{\circ} = \sum \Delta H_f^{\circ} \text{ products } -\sum \Delta H_f^{\circ} \text{ reactants}$$

$$\Delta G^{\circ} = \sum \Delta G_f^{\circ} \text{ products } -\sum \Delta G_f^{\circ} \text{ reactants}$$

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$
$$= -RT \ln K = -2.303 RT \log K$$
$$= -n \mathcal{F} E^{\circ}$$

$$\Delta G = \Delta G^{\circ} + RT \ln Q = \Delta G^{\circ} + 2.303 RT \log Q$$
$$q = mc\Delta T$$

$$C_p = \frac{\Delta H}{\Delta T}$$

$$\ln[\mathbf{A}]_t - \ln[\mathbf{A}]_0 = -kt$$

$$\frac{1}{[\mathbf{A}]_t} - \frac{1}{[\mathbf{A}]_0} = kt$$

$$\ln k = \frac{-E_a}{R} \left(\frac{1}{T}\right) + \ln A$$

Gas constant,
$$R = 8.31 \,\text{J mol}^{-1} \,\text{K}^{-1}$$

= 0.0821 L atm mol⁻¹ K⁻¹
= 62.4 L torr mol⁻¹ K⁻¹
= 8.31 volt coulomb mol⁻¹ K⁻¹