20 • Entropy & Free Energy

STUDY QUESTIONS

- 1. Imagine tossing two coins in the air.
 - a. Predict the distribution of various combinations of heads and tails.
 - b. What is the probability of the result being two heads?
 - c. What is the most probable result?

Now imaging tossing three coins in the air.

- d. What is the probability of a three heads result?
- e. Which system has the highest entropy, the two-coin system or the three-coin system?
- 2. Which one of the following pairs of samples has the higher entropy?
 - a. $Br_2(1)$ or $Br_2(g)$
 - b. $C_2H_6(g)$ or $C_3H_8(g)$
 - c. MgO(s) or NaCl(s)
 - d. KOH(s) or KOH(aq)
- 3. Predict the entropy change for the following processes:
 - a. $O_2(g) \rightarrow 2O(g)$
 - b. $2O_3(g) \to 3O_2(g)$
 - c. $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$
 - d. $NaCl(s) \rightarrow Na^{+}(aq) + Cl^{-}(aq)$
 - e. $C_2H_5OH(1) \rightarrow C_2H_5OH(g)$
 - f. $Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$
- 9. Of the following reactions,

which are spontaneous at any temperature, which are never spontaneous regardless of the temperature, which are spontaneous only at a high temperature, and which are spontaneous only at low temperature?

a.
$$C_8H_{18}(1) + {}^{25}/_2O_2(g) \rightarrow 8CO_2(g) + 9H_2O(g)$$
 - +
b. $N_2(g) + 2F_2(g) \rightarrow N_2F_4(g)$ - -
c. $Cl_2(g) \rightarrow 2Cl(g)$ + +
d. $2O_3(g) \rightarrow 3O_2(g)$ - +
e. $2C(s) + 2H_2(g) \rightarrow C_2H_4(g)$ + -

Review

Name: Period: Seat#:

STATION 1: ENTROPY CHANGE

For each of the following examples, decide whether the entropy is increasing or decreasing. Is $\Delta S + or -?$

 ΔS is _____ The electrolytic decomposition of water. $2H_2O(l) \rightarrow 2H_2(g) + O_2(g)$

 ΔS is _____ The freezing of water. $H_2O(l) \rightarrow H_2O(s)$

 ΔS is _____ The reaction of sodium metal with water. $2Na(s) + 2H_2O(l) \rightarrow H_2(g) + 2Na^+(aq) + 2OH^-(aq)$

 ΔS is ____ The boiling of water. $H_2O(l) \rightarrow H_2O(g)$

 ΔS is _____ The reaction of OF₂ and water. $OF_2(g) + H_2O(g) \rightarrow O_2(g) + 2HF(g)$

Entropy and Free Energy

STATION 2: Δ H, Δ S, Δ G, GIBB'S FREE ENERGY

$$C_2H_2(g) + 2 H_2(g) \rightarrow C_2H_6(g)$$

Substance	S [◦] (J/mol·K)	$\Delta H^{\circ} f (kJ/mol)$
$C_2H_2(g)$	200.9	226.7
$H_2(g)$	130.7	0
$C_2H_6(g)$	229.6	-84.7

Calculate ΔS , ΔH , and ΔG for this reaction at 298 K.

Entropy and Free Energy

STATION 3: EQUILIBRIUM

Consider the boiling of liquid bromine: $Br_2(l) = Br_2(g)$

At 25°C, $\Delta H^{\circ} = 30.84 \text{ kJ/mol}$ and $\Delta S^{\circ} = 92.9 \text{ J/mol} \cdot \text{K}$ for this reaction. Calculate the value of ΔG° .

Assuming that ΔH and ΔS do not change at different temperatures, calculate the normal boiling point of liquid bromine.

Entropy and Free Energy

STATION 4: PREDICTING SPONTANEITY

Consider the reaction: $MgO(s) + SO_2(g) \to MgSO_3(s)$ What is the sign of ΔH for this reaction? _____ Justify your answer.

What is the sign of ΔS for this reaction? _____ Justify your answer.

This reaction will be:

- a) spontaneous at all temperatures
- b) spontaneous at high temperatures
- c) spontaneous at low temperatures
- d) non-spontaneous at all temperatures

Entropy and Free Energy

$\overline{\text{STA}}$ TION 5: K_{eq} & Δ G

Consider the reaction:

$$C_2H_5Cl(g) + Cl_2(g) \rightarrow C_2H_4Cl_2(g) + HCl(g)$$

Standard Free Energies of Formation at 298 K

Substance	ΔG°_{f} kJ·mol·1
$C_2H_4Cl_2(g)$	-80.3
$C_2H_5Cl(g)$	-60.5
HCl(g)	-95.3
$\text{Cl}_{2}(g)$	0

Calculate the value of ΔG° for this reaction.

Calculate the value of K_{eq} for the reaction at 298 K.

$$[\Delta G^{\circ} = -RT \ln K; R = 8.31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}]$$

From the AP Exam:

THERMOCHEMISTRY/KINETICS

$$\Delta S^{\circ} = \sum S^{\circ} \text{ products } -\sum S^{\circ} \text{ reactants}$$

$$\Delta H^{\circ} = \sum \Delta H_f^{\circ}$$
 products $-\sum \Delta H_f^{\circ}$ reactants

$$\Delta G^{\circ} = \sum \Delta G_f^{\circ}$$
 products $-\sum \Delta G_f^{\circ}$ reactants

$$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$$

$$= -RT \ln K = -2.303 RT \log K$$

$$= -n \mathcal{F} E^\circ$$

$$\Delta G = \Delta G^{\circ} + RT \ln Q = \Delta G^{\circ} + 2.303 RT \log Q$$

$$q = mc\Delta T$$

$$C_p = \frac{\Delta H}{\Delta T}$$

$$\ln[\mathbf{A}]_t - \ln[\mathbf{A}]_0 = -kt$$

$$\frac{1}{[\mathbf{A}]_t} - \frac{1}{[\mathbf{A}]_0} = kt$$

$$\ln k = \frac{-E_a}{R} \left(\frac{1}{T}\right) + \ln A$$

Gas constant,
$$R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$$

= 0.0821 L atm mol⁻¹ K⁻¹
= 62.4 L torr mol⁻¹ K⁻¹
= 8.31 volt coulomb mol⁻¹ K⁻¹