15 • Reaction Kinetics

Name	
Period	Date//

FRQ PRACTICE

Answer the following questions related to the kinetics of chemical reactions.

 $I^{-}(aq) + ClO^{-}(aq) \xrightarrow{OH^{-}} IO^{-}(aq) + Cl^{-}(aq)$

Iodide ion, I⁻, is oxidized to hypoiodite ion, IO⁻, by hypochlorite, ClO⁻, in basic solution according to the equation above. Three initial-rate experiments were conducted; the results shown in the following table.

Experi ment	[I ⁻] (mol L ⁻¹)	[ClO-] (mol L ⁻¹)	Initial Rate of Formation of IO ⁻ (mol L ⁻¹ s ⁻¹)
1	0.017	0.015	0.156
2	0.052	0.015	0.476
3	0.016	0.061	0.596

(a) Determine the order of the reaction with respect to each reactant listed below. Show your work.

- (i) $I^{-}(aq)$
- (ii) ClO⁻(aq)
- (b) For the reaction,
 - (i) write the rate law that is consistent with the calculations in part (a);
 - (ii) calculate the value of the specific rate constant, k, and specify units.

The catalyzed decomposition of hydrogen peroxide, $H_2O_2(aq)$, is represented by the following equation.

$$2 \operatorname{H}_2\operatorname{O}_2(aq) \xrightarrow{\operatorname{catalyst}} 2 \operatorname{H}_2\operatorname{O}(l) + \operatorname{O}_2(g)$$

The kinetics of the decomposition reaction were studied and the analysis of the results show that it is a first-order reaction. Some of the experimental data are shown in the table below.

$\begin{array}{c} [H_2O_2] \\ (\text{mol } L^{-1}) \end{array}$	Time (minutes)
1.00	0.0
0.78	5.0
0.61	10.0

(c) During the analysis of the data, the graph below was produced.

- (i) Label the vertical axis of the graph
- (ii) What are the units of the rate constant, k, for the decomposition of $H_2O_2(aq)$?
- (iii) On the graph, draw the line that represents the plot of the uncatalyzed first-order decomposition of $1.00 M H_2O_2(aq)$.