Name					
Period	Date	/	/		

Chemical Kinetics

PRACTICE FRQ

$$8~\mathrm{H^+}(aq) + 4~\mathrm{Cl^-}(aq) + \mathrm{MnO_4^-}(aq) ~\rightarrow~ 2~\mathrm{Cl_2}(g) + \mathrm{Mn^{3+}}(aq) + 4~\mathrm{H_2O}(l)$$

 $Cl_2(g)$ can be generated in the laboratory by reacting potassium permanganate with an acidified solution of sodium chloride. The net-ionic equation for the reaction is given above.

- (a) A 25.00 mL sample of 0.250 M NaCl reacts completely with excess KMnO₄(aq). The Cl₂(g) produced is dried and stored in a sealed container. At 22°C the pressure of the Cl₂(g) in the container is 0.950 atm.
 - (i) Calculate the number of moles of Cl⁻(aq) present before any reaction occurs.
 - (ii) Calculate the volume, in L, of the $Cl_2(g)$ in the sealed container.

An initial-rate study was performed on the reaction system. Data for the experiment are given in the table below.

Trial	[Cl ⁻]	$[\mathrm{MnO_4}^-]$	[H ⁺]	Rate of Disappearance of MnO_4^- in $M s^{-1}$
1	0.0104	0.00400	3.00	2.25×10^{-8}
2	0.0312	0.00400	3.00	2.03×10^{-7}
3	0.0312	0.00200	3.00	1.02×10^{-7}

- (b) Using the information in the table, determine the order of the reaction with respect to each of the following. Justify your answers.
 - (i) Cl
 - (ii) MnO_4^-
- (c) The reaction is known to be third order with respect to H⁺. Using this information and your answers to part (b) above, complete both of the following:
 - (i) Write the rate law for the reaction.
 - (ii) Calculate the value of the rate constant, k, for the reaction, including appropriate units.
- (d) Is it likely that the reaction occurs in a single elementary step? Justify your answer.