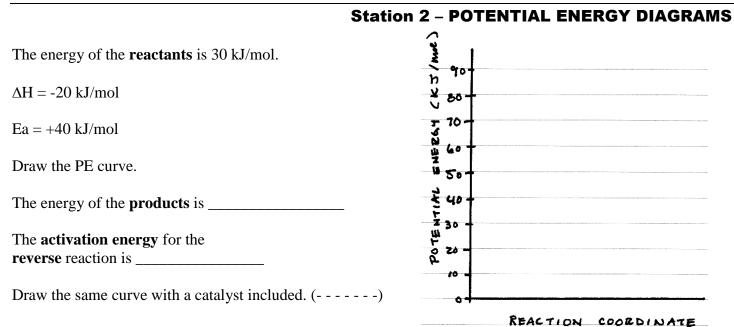
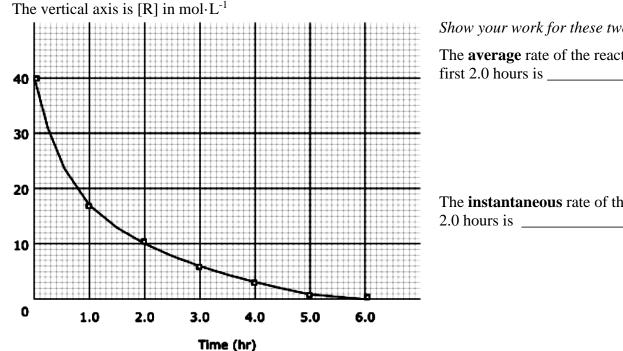

South Pasadena •	AP	Chemistry
------------------	----	-----------

Name		
Period	Date//	_

Station 1 – KINETIC ENERGY DIAGRAMS


Draw how the KE diagram would change if:



What is the name of the vertical line intersecting the graph? _

Why do particles need kinetic energy to react?

15 • Chemical Kinetics

Station 3 – RATE FROM GRAPHS

Show your work for these two problems.

The **average** rate of the reaction for the first 2.0 hours is _____

The **instantaneous** rate of the reaction at 2.0 hours is _____.

15 • Chemical Kinetics

Station 4 – CALCULATING RATES OF REACTION

Consider the combustion of propane, $C_3H_8(g) + 5 O_2(g) \rightarrow 3 CO_2(g) + 4 H_2O(g)$

The rate of disappearance of $O_2(g)$ is 6.4 mol·L⁻¹·s⁻¹

What is the rate of disappearance of $C_3H_8(g)$?

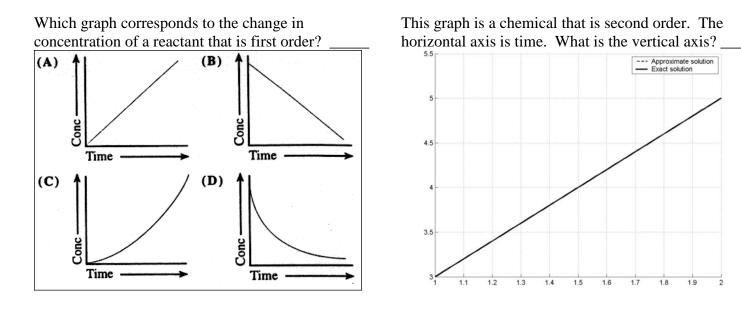
What is the rate of appearance of $CO_2(g)$?

What is the rate of appearance of $H_2O(g)$?

Station 5 – RATE LAWS – THE METHOD OF INITIAL RATES

Here is some initial rate data for the reaction, $A + B \rightarrow 2C$.

[A]	[B]	Rate (mol·L ⁻¹ ·s ¹)
0.40	0.10	3.5×10^3
0.20	0.10	1.8×10^3
0.20	0.50	4.5×10^4


a) Determine the **orders** of reactants A _____ and B _____

b) Write the **rate law** for this reaction: _____

c) Calculate the value of the **rate constant**, **k**, with **units**.

15 • Chemical Kinetics

Station 6 – ORDERS OF REACTIONS – GRAPHICAL METHODS

Station 7 – REACTION MECHANISMS

Consider this reaction mechanism:

$$\begin{split} HCOOH + H_2SO_4 &\rightarrow HCOOH_2^+ + HSO_4^- \\ HCOOH_2^+ &\rightarrow COH^+ + H_2O \\ COH^+ + HSO_4^- &\rightarrow CO + H_2SO_4 \end{split}$$

a)	What is the overall reaction?	

b) List any "intermediates."

c) List any catalysts.

d) If the first step is the slow step, what is the rate law?

15 • Chemical Kinetics

Station 8 – HALF LIFE PROBLEMS

- a) A first-order chemical has a half-life of 8.00 minutes. How long will it take for 93.75% of this chemical to decay?
- b) The reaction $X \rightarrow Y$ follows first-order kinetics with a half-life of 4.00 minutes. What is the value of k? If the initial concentration of X is 3.6 M, what is the concentration after 15.0 minutes?

Formula: $\ln[A]_t - \ln[A]_0 = -kt$

Station 9 – THE ARRHENIUS EQUATION

Calculate the activation energy, E_a , for $N_2O_5(g) \rightarrow 2 NO_2(g) + \frac{1}{2} O_2(g)$ given k (at 25°C) = 3.46 x 10⁻⁵ s⁻¹ and k (at 50°C) = 1.10 x 10⁻³ s⁻¹.

Formula:

 $\ln k = \frac{-E_a}{R} \left(\frac{1}{T}\right) + \ln A$ $R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$