Dougherty Valley HS AP Chemistry

Test Objectives: Thermo -chem, -dynamics, Kinetics

Directions:

- Rank each of the following according to a 1 5 scale, where a "5" means you can teach another student and a "1" means I never learned this. You need to be *HONEST* with yourself on these rankings.
- Highlight each objective that you gave a 1 or 2.
- Circle each objective that you gave a 3
- Box each objective that is gave a 4 and 5

•	Use Collision Theory to describe how chemical reactions occur
•	Describe the difference between effective & ineffective collisions
•	Know the factors that influence reaction rate
•	Describe how changes in temp, pressure, concentration & surface area effect reaction rate
•	Describe how the nature of the reactants influences reaction rate
•	Describe how the presence of a catalyst affects reaction rate
•	Be able to write thermochemical equations for endothermic and exothermic reactions
	 Draw, label & interpret potential energy diagrams for both endothermic & exothermic reactions
	o Be able to Label:
	PE of reactants, products & activated complex
	 Activation energy of forward & reverse reactions
	 Heat of reaction
•	Be able to indicate the effect of a catalyst on a PE diagram
•	Be able to calculate the heat of reaction (Δ H) given the heats for formation for products & reactants
•	Be able to use Hess's Law to calculate (Δ H) for a reaction/process
•	Be able to tell from the ΔH if a reaction is endothermic or exothermic
•	Define enthalpy
	 Linear relationship with equilibrium constant and T in Kelvin (Gibbs-Helmhotz eq. = -RTLn(K))
•	Define entropy
•	Define spontaneity
•	Define $\Delta \mathbf{G}$
•	Know under what conditions a change will always be spontaneous or never be spontaneous
•	Understand what <u>factors</u> increase or decrease entropy of the system
•	Given a thermochemical equation for a chemical or physical change, be able to predict the spontaneity by assessing the
	signs of ΔH & ΔS
•	Know how thermodynamics and equilibrium are related conceptually and mathematically
•	Method of Initial Rates to determine the rate law
	Determine orders of each reactant
	Determine numerical value of rate constant
	O Determine units of the rate constant
•	How does concentration affect the rate of a reaction
•	Factors that affect rate of reaction
•	Graphical analysis for determination of rate order
•	Integrated rate law determination
•	Activation Energy (E _a)
	Linear relation with rate constant and T in Kelvin
•	Half-life
•	Relationship of kinetics with equilibrium (challenging)
•	Pseudo -1 st -2 nd -0 th integrated rate law

Now for Coggle: [Add to your current coggle from Thermo]

- Create a coggle diagram for the MIDTERM (use this as your center word, include NAME/PERIOD as well)
- Post this coggle in google classroom.
- Your coggle should be more focused on the lower rankings from above, however all should be included
- In the end, BE DETAILED as much as you can get creative individually
- You may have some time in class to work on this. Bring your computer/device