Kinetics Study Materials Quick Check #2		5-21	
Name:	Period:	Seat#:	

Try these problems. If you can DO them, check the box (\square). If you CANNOT do them, write some notes TO YOURSELF about what you need to study to succeed at these problems.

Rates:

Consider the equation: $2AlBr_3 + 3K_2S \rightarrow 6KBr + Al_2S_3$ The rate of formation of KBr is 24 mol·L⁻¹·s⁻¹. What is the rate of AlBr₃? _____ of K₂S? _____ of Al₂S₃? _____

Rate from a Graph:

The concentration of a reactant is followed over time. The data is shown in a table and a graph.

a) Determine the average rate between 8 and 24 minutes. (Show work.)

b) Determine the instantaneous rate at 8 minutes. (Show work.)

Reaction Mechanisms:

The following mechanism is proposed for a reaction: $NO + NO \rightarrow NO_2 + N$ slow

 $N + O_2 \rightarrow NO_2$ fast

Write the equation for the overall reaction. Identify any reactive intermediates.

Orders of Reaction/Rate Laws:

Nitrogen(II) oxide and hydrogen react to form nitrogen and water according to this equation.

$$2NO(g) + 2H_2 \rightarrow N_2(g) + 2H_2O(g)$$

According to these experimental results, what are the orders for NO and H₂O?

[NO]	[H ₂]	Rate(mol·L ⁻¹ ·min ⁻¹)
0.015	0.020	0.60
0.015	0.040	1.20
0.030	0.020	2.40

Write the rate law for this reaction: