
Name: Period: Seat#:

☐ FRQ Practice

The first-order decomposition of X is monitored. The data from the experiment are given in the table below.

[X] (<u>M</u>)	Time (min)
1.28 x 10 ⁻⁴	0.0
4.00 x 10 ⁻⁵	35.0

- (a) Calculate the rate constant for the first order reaction using the values given for concentration and time. Include units with your answers.
- (b) Calculate the half-life of the reaction. Include units with your answer.
- (c) Experiments were performed to determine the value of the rate constant for this reaction at various temperatures. Data from these experiments were used to produce the graph below, where T is temperature. This graph can be used to determine E_a , the activation energy.
 - (i) Label the vertical axis of the graph
 - (ii) Explain how to calculate the activation energy from this graph.

Useful information: $ln[X]_t - ln[X]_0 = -kt$

☐ Catalysts

A proposed mechanism for the depletion of O₃ in the upper atmosphere is shown below.

Step I
$$O_3 + Cl \rightarrow O_2 + ClO$$

Step II $ClO + O \rightarrow Cl + O_2$

- (a) Write a balanced equation for the overall reaction represented by Step I and Step II above.
- (b) Clearly identify the catalyst in the mechanism above. Justify your answer.
- (c) Clearly identify the intermediate in the mechanism above. Justify your answer.