

STATION 1 • MASS ACTION EXPRESSIONS

Write the mass action expression for the equilibrium: $Fe_3O_4(s) + 4H_2(g) \rightleftharpoons 3Fe(s) + 4H_2O(g)$

Write the mass action expression for the equilibrium: $Ca(OH)_2(s) \rightleftharpoons Ca^{2+}(aq) + 2 OH^{-}(aq)$

The equilibrium constant, $K_c = 7.9 \times 10^{-6}$, is this equilibrium system reactant or product-favored.

Chemical Equilibrium

	STATION 2 • MANIPULATING K
Given:	
$H_2O(1) \rightleftharpoons H^+(aq) + OH^-(aq)$	$K_c = 1 \times 10^{-14}$
$\mathrm{HCN}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq}) + \mathrm{CN}^{-}(\mathrm{aq})$	$K_c = 4.0 \text{ x } 10^{-10}$
Calculate K _c for this reaction:	
$HCN(aq) + OH^{-}(aq) \rightleftharpoons H_2O(l) + CN^{-}(aq)$	$K_{c} = ???$
This reaction is -favored.	

Chemical Equilibrium

STATION 3 · K_p & K_c

Consider the equilibrium: $2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$.

At 100°C, the equilibrium concentrations for this system are: $[NO] = 0.52 \text{ }\underline{M}; \qquad [O_2] = 0.24 \text{ }\underline{M}; \qquad [NO_2] = 0.18 \text{ }\underline{M}$

Write the expression for Kc and calculate its value at this temperature?

What is Δn for this system?

Write the expression for K_p and calculate its value at this temperature.

Chemical Equilibrium

STATION 4 • LE CHÂTELIER'S PRINCIPLE

Consider the gaseous equilibrium: $2\text{CCl}_4(g) + O_2(g) \rightleftharpoons 2\text{COCl}_2(g) + 2\text{Cl}_2(g) \quad \Delta H = +35 \text{ kJ}$ Predict the effect each change would have on the concentrations of the each substance.

Add CCl ₄	 	
Remove Cl ₂	 	
Add COCl ₂	 	
Increase temperature	 	
Reduce container volume	 	
Add a catalyst	 	
Remove O ₂	 	
Add He to increase pressure	 	

A different equilibrium shifts toward the reactants when the temperature is increased. From this observation, you know that the reaction is ______ (exothermic / endothermic).

Chemical Equilibrium

STATION 5 . ICE BOX PROBLEM

Consider the equilibrium: $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$

If 0.200 mol $SO_3(g)$ is placed a 0.500 Liter container, it is found that 0.050 mole of $O_2(g)$ is in the container at equilibrium. Fill in the ICE box and determine the K_c for this reaction.

	SO_2	O_2	SO_3
Initial			
Change			
Equilibrium			

Chemical Equilibrium

STATION 6 • ANOTHER ICE BOX PROBLEM

At 985°C, the equilibrium constant, K_c, for the reaction, $H_2(g) + CO_2(g) \rightleftharpoons H_2O(g) + CO(g)$, is 1.63.

If 2.00 moles each of $H_2(g)$ and $CO_2(g)$ are placed in a 1.00-Liter container and allowed to come to equilibrium, determine the equilibrium concentrations of the four chemicals.

	H_2	CO_2	H_2O	CO
Initial				
Change				
Equilibrium				

Chemical Equilibrium

STATION 7 • TEST QUOTIENT,Q

Consider the equilibrium: $2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$. K_c = 0.499

The system is set up with the following concentrations:

 $[NO] = 0.50 \underline{M};$ $[O_2] = 0.25 \underline{M};$ $[NO_2] = 0.25 \underline{M}$

This reaction will ______ (shift right, shift left, remain unchanged).

Justify your prediction.

Chemical Equilibrium

				S T A	TIC	0 N 8 • NCh(D PROBLEMS	
33.	3. Mercury(II) oxide, HgO, is decomposed upon heating according to this equation.			Ques this s	itions 32 and 33 should both system.	be answered with reference to		
		2H	$\operatorname{IgO}(s) \rightleftharpoons 2\operatorname{Hg}(t)$	$O_2(g)$		$H_2(g) + I_2(s) \rightleftharpoons 2HI(g)$	g) $\Delta H = +51.8 \text{ kJ}$	
	What	is the equilib	orium expressio	n for this process?	32. Which would increase the equilibrium quantity of $HI(g)$?			
	(A)	$_{K} = \frac{\left[\text{Hg}\right]^{2} \left[\text{O}\right]}{}$	$\frac{2}{2}$ (B)	$(\mathbf{B}) K = \frac{[\mathrm{Hg}][\mathrm{O}_2]}{[\mathrm{HgO}]}$		components present.	ent.	
	(23)	$K = [HgO]^2$				I. increasing pressure	II. increasing temperature	
(6	(\mathbf{C})	$C = K - [H_{\sigma}][O_{\sigma}]$		$K = [\Omega_{2}]$		(A) I only	(B) II only	
$(\mathbf{C}) \mathbf{K} = [\mathbf{H}]$		·· [···ຍ][°2	$\begin{bmatrix} 0 \\ 2 \end{bmatrix}$ (D) \mathbf{M}			(C) Both I and II	(D) Neither I nor II	
34.	Consic	ler this reaction	on.		33.	What is the equilibrium co	nstant expression for this	
	21	$NO(g) + Cl_2(g)$	\Rightarrow 2NOCl(g)	$\Delta H = -78.38 \text{ kJ}$			[++][+]	
	What of produce	conditions of the the highest	temperature and yield of NOCl a	pressure will at equilibrium?		$(\mathbf{A}) K = \frac{[\mathbf{HI}]}{[\mathbf{H}_2][\mathbf{I}_2]}$	$(\mathbf{B}) K = \frac{\left[\mathbf{H}_{2}\right]\left[\mathbf{I}_{2}\right]}{\left[\mathbf{HI}\right]^{2}}$	
		Т	Р			2[HI]	[HI] ⁵	
	(A)	high	high			(C) $K = \frac{1}{\left[H_2\right]\left[I_2\right]}$	(D) $K = \frac{[\mathbf{H}_1]}{[\mathbf{H}_2]}$	
	(B)	high	low				L 23	
	(C)	low	high					
	(D)	low	low					

Chemical Equilibrium – Not assessed. Challenge Problem STATION 9 • PREDICTING REACTIONS

A solution of hydrochloric acid is added to a solution of potassium nitrite.

(i) Balanced equation:

(ii) What are the oxidation states of the N atom before and after the reaction?

Chemical Equilibrium – Not assessed. Challenge Problem STATION 9 • PREDICTING REACTIONS

A solution of hydrochloric acid is added to a solution of potassium nitrite.

(i) Balanced equation:

(ii) What are the oxidation states of the N atom before and after the reaction?